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Chapter 1

Introduction

Strong gravitational effects distort polarization information contained in neutron star

emissions. Understanding the distortions precisely is essential to understanding the po-

larization information which may contain valuable insights about neutron star processes

(including hints of new physics). This chapter introduces and contextualizes the problem

that the following chapters formalize and proceed to solve. We begin by briefly discussing

the astrophysics of neutron stars and aspects of polarimetery. The current chapter con-

cludes by outlining the organization of the remainder of this thesis.

1.1 Neutron Stars

Neutron Stars (NS) belong to the family of ‘compact objects’, the parent category con-

sisting also of White Dwarfs (WD) and Black Holes (BH). Compact objects are the end

products of stellar evolution that have ceased active nuclear burning for maintaining

structural support. Additionally, such objects (owing to their compactness) differ from

main-sequence stars because, at their densities, both the precise role of short-range par-

ticle interactions and the macroscopic general relativistic effects become manifest.

Neutron Stars are among some of the most exotic known astrophysical objects whose
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interior physics can (in principle) be probed observationally1. Further, as is ubiquitous

in astrophysical studies, a complete description of neutron star physics often involves

ideas from multiple theoretical domains such as high energy physics, nuclear physics,

gravitational physics, quantum electrodynamics, etc. Hence, it is no surprise that neu-

tron stars have remained the subject of interest for several research programs. This in-

terest in neutron stars amongst astrophysicists has naturally led to several detailed re-

views on the subject [1, 2, 3, 4]. In this section, we will briefly glance at some important

developments in the field of neutron star astrophysics.

1.1.1 Early History

Arguably, Lev Landau anticipated, even before the discovery of neutrons by James Chad-

wick, the existence of stars that ‘look like giant atomic nuclei’. He later shared this with

Niels Bohr and Leon Rosenfeld in Copenhagen in 1932 (also the year when James Chad-

wick published his discovery of neutrons in Nature). An interesting discussion on Lan-

dau’s involvement in neutron star physics can be found in [5]. A year later, in 1933, Wal-

ter Baade and Fritz Zwicky gave a talk in a conference organized by American Physical

Society, where they coined the term ‘supernova’. Finally, on 15 August 1934, the abstract

of their talk was published in Physical Reviews with the following claim [1]

With all reserve we advance the view that supernovae represent the transi-

tion from ordinary stars into neutron stars, which in their final stages consist

of extremely tightly packed neutrons.

The next important milestone was the derivation of the hydrostatic equilibrium with

inclusion of general relativistic effects. This was worked out by R. C. Tolman at Caltech

and J.R. Oppenheimer and G. M. Volkoff at University of Berkeley and, coincidentally,

submitted and published in the same edition of Physical Review on 15 February, 1939

1Black holes are denser but any information about processes inside Schwarzschild radius is irrecover-
able
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[6, 7]. The Tolman-Oppenheimer-Volkoff Equation (discussed in more detail in §1.1.4)

provided the starting grounds for investigating various neutron star models. This sem-

inal result launched the (still on-going) hunt for an appropriate equation of state (see

§1.1.5).

Initial attempts to observe neutron stars were in X-Ray. Stuart Bowyer’s team tried

to estimate the size of the x-ray source in crab nebula and concluded that it was too

big to be a neutron star [8]. Ironically, they missed detecting the crab nebula pulsar

as it is hidden within a pulsar wind nebula [9]. Though some compact x-ray sources

had been detected by 1968, their association with neutron stars were not convincing

for the majority of the astrophysics community. It was in 1967, almost three decades

after the initial conceptualization, Jocelyn Bell discovered the first radio pulsar [10] that

was attributed to be a neutron star. She performed this observation using the (then)

state-of-the-art radio telescope her doctoral advisor, Anthony Hewish, had constructed

at Cavendish Laboratory2.

Initially, there was disagreement about whether the source of pulsation were rotating

white dwarfs or neutron stars. The very small spin period of crab nebula pulsar (∼ 30

milliseconds) provided authoritative evidence to rule out the white dwarf hypothesis.

This was because white dwarfs would not be able to survive the strong centrifugal forces

generated by rotation as rapid as that of the crab nebula pulsar. Later, the observed

slowing down of pulsar periods provided arguments against possible stellar oscillations

as pulsar sources because those were expected to be stable in the concerned time-scales.

Finally, the verdict on radio pulsars was that they were spinning neutron stars with a

strong magnetic field offset from their spin-axis and responsible for producing beamed

emissions (like a light-house).

The textbook on neutron stars by Haensel et al. [11] starts with an excellent review

of the historical role of neutron star discussions in the broader astrophysics research of

2It remains controversial for the Swedish Academy to have excluded Jocelyn Bell in the Nobel Prize
awarded for the discovery of pulsars in 1974.
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20th century.

1.1.2 Formation and Evolution

Canonically, two mechanisms for the formation of neutron stars have been proposed.

1. After the final stages of the nuclear burning in main sequence stars, the core is

rendered inert and unable to support itself against further gravitational collapse.

If the mass of the core falls below the Chandrasekhar limit (∼ 1.4 M⊙), the star is

supported via electron degeneracy pressure. However, if the core mass exceeds the

Chandrasekhar limit, it collapses into a neutron star (or, in more massive cases, a

black hole).

2. Accretion of matter onto a white dwarf in a binary system, under the appropriate

conditions, can lead to the white dwarf accumulating enough matter to exceed the

Chandrasekhar limit after its formation and collapse into a neutron star.

It is worth mentioning that, as argued by Bhattacharya [12] on the grounds of obser-

vational data in 1991, ‘so far, no convincing need for the formation of neutron stars in

globular clusters by accretion induced collapse of white dwarfs has been demonstrated’.

Modelling neutron star evolution is largely a question of modelling its magnetic field

evolution and its rotation rate evolution (the two being connected in non-trivial ways).

Initially, Gunn and Ostriker [13] proposed an argument for field decay due to Ohmic re-

sistance caused by the currents that maintain the field. Such arguments are met with

some resistance themselves as the interior of neutron stars are now thought to be highly

conducting (superconducting even) leading to currents that practically survive forever

[14]. More convincing pieces of observational evidence for magnetic field decays come

from velocity measurements of radio pulsars. Assuming most pulsars are born near the

galactic center, the ratio of their velocity to the distance from the galactic center provides

an estimate for their age. In certain regimes, it has been demonstrated that this ‘kinetic
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age’ has correlation with the ‘spin-down age’ (τ≡ P/2Ṗ , where P is the pulsar period and

Ṗ is the rate of change of pulsar period) [15]. Another observational evidence for field

decay is that young pulsars often associated with supernova remnants have stronger

magnetic fields than old pulsars found in globular clusters or as white dwarf compan-

ions. Theoretically, three major physical models are proposed to explain the field decay

and, as of yet, none of them provide completely satisfactory solutions [16]. The chapter

by Dipankar Bhattacharya and Ganesan Srinivasan in [3] provides a review of observa-

tional and theoretical issues in field decay. Discussions of pulsar spin-down and braking

can be found in [17, 18, 19].

1.1.3 Neutron Star Structure

Neutron stars are roughly divided into three regions- atmosphere, crust and core. How-

ever, each of these regions is often further divided into sub-regions as per the choice of

the model.

1. Atmosphere is thought to be very thin, composed of plasma and is the source of

the thermal spectrum of NS emissions. These thermal emissions from the atmo-

sphere carry information about composition, temperature and field geometry of

the surface.

2. Crust starts off as non-degenerate electron gas and ions but quickly turns into

ultra-relativistic strongly degenerate almost ideal electron gas. With increasing

density deeper into the star, beta capture increases and nuclei start becoming neu-

tron rich. Towards the inner crust and at the crust-core interface, neutronization

reaches a point where nuclei essentially disappear.

3. Core is largely composed of neutrons with some small percentage of protons, elec-

trons and muons. Electrons and muons form an ideal fermi gas and protons and

neutrons, due to nuclear interactions, acts as interacting Fermi liquids in super-
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fluid states. Dozens of hypothesis about the state of matter at the heart of neutron

stars have been put forward such as hyperonization (hyperons are baryonic parti-

cles with one or more strange quarks), pion condensation (bosonic condensation

of pion like excitations), kaon condensation (bosonic condensation of kaon like

excitations), etc. but uncertainty prevails.

To arrive at an understanding about NS processes or propose experimentally verifi-

able claims about NS structure, the general strategy is to first develop theoretical models

and then explore their specific features. As one would guess, claims about neutron star

structure can be highly model dependent. However, developing any neutron star model

would involve solving stellar structure equation governing equilibrium conditions, mak-

ing a choice of equation of state and providing a description of radiative transfer. We

briefly discuss the first two topics in this chapter and the last one in the following chap-

ter.

1.1.4 Tolman-Oppenheimer-Volkoff Equation

As hinted earlier, the starting point for understanding neutron star structure is the Tolman-

Oppenheimer-Volkoff equation for hydrostatic equilibrium solved in conjunction with

a reasonable choice of equation of state. Then, to model physical settings more realisti-

cally, one has to arrive at the analog of TOV equation for a fast rotating general relativis-

tic body (discussed again in §4.1.2) and an equation of state that includes sophisticated

sub-nuclear interactions. Following is a brief outline of the derivation of stellar structure

equations in GR but more rigourous expositions can be found in standard textbooks on

general relativity (see §23.4 in [20]) or compact objects (see §6.1 in [11]).

Schwarzschild metric describes the curvature in the exterior regions of spherically

symmetric spacetime. However, for solving the stellar structure of stars, we need to start
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with a more general metric for spherically symmetric spacetimes.

d s2 = gµνd xµd xν =−e2Φc2d t 2 +e2Λdr 2 + r 2(dθ2 + sin2θdφ2) (1.1)

where Φ = Φ(r ) and Λ = Λ(r ) are some functions which decay to 0 as r → ∞ so that

the metric asymptotically approaches metric for Minkowski (flat) geometry. This metric

must satisfy the Einstein Field Equations -

Rµν− 1

2
Rgµν =

(
8πG

c4

)
Tµν (1.2)

where information about curvature is captured in Ricci tensor Rµν and Ricci scalar R =
gµνRµν (i.e. the trace of Ricci tensor). Tµν captures information about the distribution

of mass and energy which serves as the source of curvature. We assume that neutron

star matter is a non-viscous perfect fluid with total energy density ϵ. For such a fluid, all

stress components are zero except for isotropic pressure P . This is a permissible approx-

imation in the case of neutron stars because the shear stress produced by elastic strain or

magnetic field is much smaller than pressure. Thus, we can represent the stress-energy-

momentum tensor as

Tµν = (P +ϵ)uµuν−P gµν (1.3)

where uµ,uν are fluid 4-velocities. Note that both P and ϵ are defined in a local co-

moving inertial frame. Finally, for assembling the structure equations, we require the

law of local energy-momentum conservation

T µν
;ν = 0 (1.4)

where the semi-colon in subscript refers to the covariant derivative along xν compo-
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nent. One can further show thatΛ(r ) can be written in terms of another function m(r )

e2Λ(r ) =
(
1− Gm(r )

r c2

)−1

(1.5)

where m(r ) refers to the gravitational mass enclosed by a sphere of radius r . It is impor-

tant to note that in the case of neutron stars, gravitational mass m(r ) tends to be smaller

than the baryon mass (or rest mass) due to gravitational mass defect [21]. Finally, on cal-

culating all the required components of the Ricci tensor and using field equations and

conservation equations, one arrives at the following set of first-order coupled differen-

tial equation for the stellar structure -

dP

dr
=−Gρ(r )m(r )

r 2

(
1+ P (r )

c2ρ(r )

)(
1+ 4πP (r )r 3

m(r )c2

)(
1− 2Gm(r )

c2r

)−1

(1.6)

dm

dr
= 4πr 2ρ(r ) (1.7)

dΦ

dr
= 1

c2ρ(r )

(
1+ P (r )

c2ρ(r )

)−1 dP

dr
(1.8)

where ρ(r ) = ϵ(r )/c2 is mass density. Eq. (1.6) is the complete form of the famous

TOV-equation which reduces to the following in non-relativistic regimes (P << ρc2 and

Pr 3 << mc2)

dP

dr
=−Gmρ

r 2
(1.9)

dm

dr
= 4πr 2ρ (1.10)

On comparing pressure gradients with and without relativistic corrections we find that,

as one goes deeper into the star, pressure rises more rapidly than Newtonian theory

would suggest. Additionally, as pressure increases, the relativistic correction term due

to pressure becomes more dominant. Hence, GR can lead to further stellar collapse in

the cases where Newtonian analysis would predict a hydrostatic equilibrium.

To describe the neutron star structure, we started with 4 unknown functions - two
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in the metric Φ(r ) and m(r ) (or originally Λ(r )) and two in energy-momentum tensor

P (r ) and ρ(r ) (or originally ϵ(r )). To close the system, we need to supplement the three

differential equations with an equation of state which connects pressure with density3.

1.1.5 Equation of State

The Equation-of-State (EoS) is constituted via microscopic considerations and an ap-

propriate EoS of neutron stars would carry information about particle interactions at ex-

tremely high densities. At such densities (higher even than the nuclear density), strange

baryons and deconfined quarks could appear providing conditions that are difficult to

replicate in laboratories. However, the EoS also affects the stellar equilibrium suffi-

ciently enough to lead to macroscopic changes in the mass-radius relations and observ-

ing mass and radius of neutron stars can constrain proposals in particle and high-energy

physics. This is a rapidly advancing field, one that attracts astrophysicists and nuclear

physicists alike. Shapiro et al. [1] has an excellent discussion about some equations

of states but it has significantly grown out-dated since its publication in early 1980s.

Haensel et al. [11] has a more recent textbook dedicated primarily towards providing

pedagogical expositions of various Neutron Star EoS. Though it ignores the possible

appearance of quark matter and only discusses nucleonic and hyperonic degrees-of-

freedom, the most up-to-date scientific review at the moment is Burgio et al. [22].

1.2 Polarization

Having discussed some general elements of neutron star physics, we now focus our at-

tention to polarization of the NS radiation. This section primarily motivates the need for

neutron star polarimetery and introduces Stokes parameters for quantifying polariza-

3Since neutron stars cool rapidly via neutrino flux soon after their formation, their actual temperatures
are much smaller than their Fermi temperatures. Therefore, it is reasonable to ignore thermal contribu-
tions while calculating pressure. Some cases where such approximations fail would include very young
neutron stars and neutron star atmosphere
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tion. Mechanisms generating linearly polarized radiation in neutron stars are discussed

in §2.1 Experimental methods for measuring X-Ray polarization and polarimetery mis-

sions are discussed later in §4.2.

1.2.1 Why Neutron Star Polarimetery

A family of reasons to study the information contained in the polarimetery data of neu-

tron star emissions could be to arrive at more refined models for neutron star physics.

More specifically

1. Studying the polarization of neutron star radiation might help us understand bet-

ter the radiative transfer processes that produce the radiation.

2. We expect regions of neutron stars to be have differential opacity as a function of

the polarization mode of the passing radiation.

3. Since polarization is a function of magnetic field distribution and the apparent

field geometry changes periodically for pulsars, pulsations in polarization data re-

veal information about the magnetic field distribution.

4. Bending of light around neutron stars due to their compactness factor reduces the

linear polarization as more of the surface (with differently polarized emissions)

becomes visible to the observer. Therefore, polarization can provide new insights

on mass-to-radius ratio measurements.

Alternatively, one might want to study polarization in neutron star emissions to test the-

oretical predictions which are difficult to test in terrestrial laboratory conditions. For

example, in certain neutron stars (called magnetars) that display the strongest known

magnetic fields in the universe reaching up to 1015 Gauss, quantum electrodynamics

predicts vacuum to act as a birefringent medium. This is a famous claim that astro-

physicists have been trying to test using magnetar observations [23].
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1.2.2 Stokes Parameters

To build up to the formalism of Stokes parameters for describing polarization of electro-

magnetic waves, a natural place to begin would be Maxwell’s equations in the absence

of sources

∇.E = 0 (1.11)

∇.B = 0 (1.12)

∇×E =−∂B

∂t
(1.13)

∇×B =µ0ϵ0
∂E

∂t
(1.14)

By making use of the vanishing divergences and combining the two curl equations, we

find that each Cartesian component of E⃗ and B⃗ follow the wave equation

∇2u = 1

c2

∂2u

∂t 2
(1.15)

where c is the speed of light. The solution for the wave equation are famously composed

of functions of the following form

u (⃗x, t ) = exp(i k⃗ .⃗x −ωt ) (1.16)

with the frequencyω and the magnitude of the wave vector k being related by the simple

dispersion relation k = ω/v , where v is the phase velocity of propagation. Further, it is

easy to show that perturbations in electric and magnetic fields propagate as transverse

waves and remain perpendicular to each other [24]. Therefore, we can construct a set

of orthogonal basis ϵ̂1, ϵ̂2, n̂ where n̂ is the unit vector pointing in the direction of the

wave-vector k⃗.

The most general homogeneous plane wave solution (now looking at electric field)
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would be the superposition of the perturbations in ϵ̂1 and ϵ̂2 directions

E⃗ = (E1ϵ̂1 +E2ϵ̂2)e i (kn̂ .⃗x+ωt ) (1.17)

where the direction of wave propagation is along the z-axis. Both E1 and E2 are to be

taken as complex amplitudes to allow for a phase difference between the two constituent

waves along ϵ̂1 and ϵ̂2 - henceforth referred to as the two linear polarization modes.

If E1 and E2 have the same phase, the electromagnetic wave is linearly polarized with

the polarization vector making an angle of θ = tan−1(E2/E1) with ϵ̂1. If E1 and E2 have

some phase difference, we get elliptical polarization. A special case of elliptical polariza-

tion would be when the phase difference is exactly π/2 leading to circular polarization.

If we assume constant magnitude E0 for both E1 and E2, then linearly polarized light

would be of the form

E⃗ = E0(ϵ̂1 ± ϵ̂2)e i (⃗k .⃗z−ωt ) (1.18)

Ex = E0 cos(⃗k .⃗z −ωt ) (1.19)

Ey =∓E0 cos(⃗k .⃗z −ωt ) (1.20)

In the case of circular polarization, we can define two basis in terms of the positive he-

licity (counter-clockwise rotation) and negative helicity (clockwise rotation)

ϵ± ≡ 1p
2

(ϵ1 ±ϵ2) (1.21)

If we can write E⃗(z, t ) in terms of either the linear polarization bases (ϵ1,ϵ2) or the circu-

lar polarization basis (ϵ+,ϵ−) then we know the polarization contents of the wave. How-

ever, in practice we encounter the inverse problem of observing a beam of light and

having to extract its polarization components along the basis. In 1851, G. G. Stokes [25]
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proposed a way to do exactly this4.

On getting the dot product of E⃗ with ϵ̂1, ϵ̂2, ϵ̂+ and ϵ̂− we can get the polarization

contribution on x-axis, y-axis, positive helicity and negative helicity. If we represent each

of these separately as an amplitude and phase, we can write

E1 = a1e iδ1 (1.22)

E2 = a2e iδ1 (1.23)

E+ = a+e iδ+ (1.24)

E− = a−e iδ− (1.25)

This equips us to define four stokes parameters in the following way

s0 = |ϵ̂1.E⃗ |2 +|ϵ̂2.E⃗ |2 = a2
1 +a2

2 (1.26)

s1 = |ϵ̂1.E⃗ |2 −|ϵ̂2.E⃗ |2 = a2
1 −a2

2 (1.27)

s2 = 2Re|(ϵ̂1.E⃗)∗.(ϵ̂2.E⃗)| = 2a1a2 cos(δ2 −δ1) (1.28)

s3 = 2Im|(ϵ̂1.E⃗)∗.(ϵ̂2.E⃗)| = 2a1a2 sin(δ2 −δ1) (1.29)

The four scalars quantities are often referred by different labels in different sources. In

this document, hereon, we will adopt the convention that calls the four stokes parame-

ters s0 = I ,s1 =Q, s2 =U , and s3 =V . We can observe that I parameter is essentially the

total intensity of the wave. Q parameter captures how much linear polarization in one

axis differs from the orthogonal direction. U and V provide information about the phase

difference. Note that these can be equivalently written in terms of the circular polariza-

tion basis (ϵ̂+, ϵ̂−) and in that case Q and U carry phase information and V captures the

difference in linear polarization along the two directions.

The four stokes parameters are obviously not independent of each other as they are

4This old technique was brought to fame much later after its discovery by Chandrasekhar
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constructed from merely three quantities. In the case of quasi-monochromatic or non-

coherent light beams, the stokes parameter must obey the general condition

I 2 ≥Q2 +U 2 +V 2 (1.30)

which becomes an equality in the case of monochromatic light.

The relation of Stokes parameters to the polarization ellipse can be further under-

stood by noting the following relations [26]

Q = I pL cos(2ψ)cos(2χ) (1.31)

U = I pL cos(2ψ)sin(2χ) (1.32)

V = I pL sin(2ψ) (1.33)

where χ is the angle between major axis of the polarization ellipse and the x-axis of the

reference frame in which the polarization ellipse is defined and ψ is the angle between

major axis of the polarization ellipse and the chord joining major and minor axis. Fur-

ther, p corresponds to the degree of linear polarization defined as

pL = 1−e2

1+e2
(1.34)

where e is the eccentricity (i.e. ratio of major and minor axis) of the polarization el-

lipse. These results would be helpful in calculating the polarization transport through

curved spacetime in §2. Most processes in astrophysics produce linearly or highly lin-

early polarized light (i.e. ψ = 0). So, we will focus our attention only on parameters

Q = I pL cos(2χ) and U = I pL sin(2χ) in the following discussions.
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Figure 1.1: Polarization ellipse and its characteristic angles.

1.3 Project Outline

The goal of this thesis is to understand how gravitational effects affect the polarization

information that we expect from neutron stars. The rest of the chapters are organized

in the following manner. §2 goes into details of the gravitational calculations and ap-

proximations that power the polarization transport code. §3 illustrates and explains

the results generated by the polarization transport code. Finally, §4 discusses the direc-

tions in which the project can be extended, both in terms of including new physics and

streamlining the simulation-to-observation pipeline. The appendix presents a top-level

user-guide for running the polarization transport code.
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Chapter 2

Gravitational Effects and Pulsar

Polarization

This chapter begins with a discussion on polarization features of neutron star emissions.

Then, we derive the photon propagation equation in Schwarzschild and discuss the well-

known Beloborodov approximation to the exact solution. A modification to improve the

performance of Beloborodov approximation is introduced before moving onto deriving

the polarization transport solutions. We end this chapter with a schematic algorithm to

generate polarization pulse profiles which is followed by the Polarization Transport Code

to generate the results presented in the next chapter.

2.1 Polarization of Neutron Star Emissions

Calculations in this chapter borrow pieces from the literature on neutron star’s atmo-

spheric emissions in X-Ray [27, 28, 29] and polarization in high energy environments

[30, 31, 32]. We begin by assuming a strong enough magnetic-field |B⃗ | > 1010G such

that the electron cyclotron energy is greater than or equal to the X-ray photon energies

(ranging from 100eV to 100KeV). Recall that the expression for electron cyclotron energy
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is

EBe =
ħeB

me c
= 11.6

(
B

1012G

)
(2.1)

where e is the electron charge, me is electron mass, B is the magnetic field strength and

ħ is the reduced Planck’s constant. In general, one computes polarization of anisotropic

emissions by solving a system of four transport equations for the Stokes parameters.

However, it can be shown that in the aforementioned strong magnetic field approxi-

mation, one can employ a considerably simpler method of solving only two transport

equations for intensities of normal mode (NM) waves [32], each experiencing a differ-

ent level of opacity through NS atmosphere. Intensity of these two modes - ordinary

Io and extraordinary Ie - sum up to the total intensity of the received radiation. Ordi-

nary mode is polarized parallel to the local magnetic field and extraordinary mode is

polarized perpendicular to the local magnetic field. Io and Ie can be computed using a

radiative transfer model for NS atmosphere [33]. Since we are more concerned with how

polarization gets affected by gravity, we will not investigate radiative transfer models in

much detail.

The intensity I and Stokes parameters Q and U at a region of neutron star surface

can be expressed as (see §4 of [32])

I = Io + Ie (2.2)

Q = (Io − Ie )pL cos2χo (2.3)

U = (Io − Ie )pL sin2χo (2.4)

where χo is defined in Fig. 1.1 as the angle between the major axis of the polarization

ellipse of the ordinary mode and the x-axis of the reference frame in which Stokes pa-

rameters are being considered. The degree of linear polarization pL is also what was

introduced in Eq. 1.34 in terms of the eccentricity of the polarization ellipse. Further,
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in dipole approximation, we can express the degree of linear polarization for normal

modes as [32]

pL = |q|sin2θB√
4cos2θB +q2 sin4θB

(2.5)

where θB is the angle between the wave-vector k̂ ′ of the outgoing photon and the mag-

netic field B⃗ at the point of emission and q is an angle-independent but photon-energy

dependent parameter fixed by the Hermitian components of the polarizability tensor

(defined in coordinates where polar axis is aligned with the magnetic field). Assuming

we are concerned with completely ionized hydrogen plasma and electron-positron vac-

uum polarization is ignored, the parameter can be shown to be [34]

q =
E ′2(E 2

Be
+E 2

Bi
−EBe EBi )−E 2

Be
E 2

Bi

E ′3(EBe −EBi )
(2.6)

where E ′ is the photon energy as measured at the location of emission and

EBi =
(

me

mp

)
EBe = 6.32×10−3

(
B

1012G

)
K eV

is the ion cyclotron energy. For photon energies much greater than ion cycltron energy

EBi , q parameter approaches EBe /E ′ and pL remains close to 1 for a wide range of θ′

values. Within these approximations, the angle χo coincides with the azimuthal angle

of the magnetic field in a reference frame with polar axis parallel to the wave-vector1 k̂ ′.

This follows directly from the fact that ordinary modes are linearly polarized parallel to

the magnetic field.

In a sense with Eq. (2.4)-(2.6) and an emission model for the normal modes, we

have enough information to compute the local polarization properties of a neutron star.

1We introduce a prime in the wave-vector k̂ in prior anticipation of a difference between rectilinear
observed trajectory and a ‘true’ curved trajectory. Similarly, we introduce a prime in photon energy E in
anticipation of the distinction between observed red-shifted energy and energy at the time of emission.
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However, gravitational effects distort this polarization information and understanding

these distortions precisely is an important step towards bridging our theoretical radia-

tive transfer modelling of NS atmospheric emissions and observational data from po-

larimetery of isolated X-ray pulsars.

2.2 Expected Distortion

Qualitatively, due to gravitational effects, we can already guess what could be the possi-

ble effects on the observed polarization. Following are the major two effects we expect

1. Due to gravitational lensing, we would see more of the neutron star surface at

once. Light rays from the regions of the star which would be ‘behind’ the sim-

ple projection of the surface with only rectilinear rays permitted would also start

contributing once the rays are allowed to bend around the star and reach the ob-

server. However, we observe neutron stars as point sources with no geometrical

span and the observed polarization is an integration over the complete visible

surface. Therefore, more regions of the star would contribute towards the total

polarization due to the compactness.

2. Secondly, as the light rays bend around the neutron star, the polarization of light it-

self reorients geometrically in space. Therefore, the Stokes parameter of the emit-

ted ray of light transferred to the observer would not be the same with and with-

out general relativistic effects. The change in the polarization would be function

of how much a certain ray has to bend to reach the observer.

To make both of these effects precise, we need to calculate how light rays propagate

in the spacetime around a neutron star, what image of the surface is projected onto

an observer at infinity and how the polarization vector changes during transport phase

before integrating over the entire visible surface. Once we know how to do this, we can

create a polarization map on the neutron star surface and perform these calculations for
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each spin phase. This would generate pulse profiles for the neutron star flux in a given

polarization mode.

2.3 Photon Propagation in Schwarzschild

To perform the above mentioned calculations, we assume that the spacetime is de-

scribed by the exterior Schwarzschild solution. This is a simplifying assumption but

modelling with further sophistication, though computationally demanding due to lack

of closed form GR solutions, could in principle be analysed similarly (see §4.1.2).

2.3.1 Exact Trajectories

The first step is to understand how light behaves outside neutron stars and this is done

by calculating null-geodesics d s2 = 0 in Schwarzschild spacetime. We start with writing

the spacetime interval in the following choice of coordinates

d s2 =−g t t d t 2 + gr r dr 2 + r 2(dθ2 + sin2θdφ2) (2.7)

where g t t = g−1
r r = (1−2GM/c2r ). For null-geodesics, proper time dτ is zero and cannot

be used to write equations of motion. There are two ways around it. One can use an

arbitrary parameter λ to perform the calculations or one could derive the equations for

the massive particles and take mass going to zero limit. We shall proceed with the former

approach (similar to §9.4 in Hartle [35]).

Deriving the photon-propagation equation is greatly simplified by exploiting the

symmetries and conserved quantities of the problem. In the static spherically symmet-
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ric spacetime which is independent of t and φ coordinates, we have two Killing vectors

ξ⃗= (1,0,0,0) (2.8)

η⃗= (0,0,0,1) (2.9)

Therefore, the following two dot products define the conserved quantities

e ≡−ξ⃗.u⃗ =
(
1− 2GM

c2r

)
d t

dλ
(2.10)

l ≡ ξ⃗.u⃗ = r 2 sin2θ
dφ

dλ
(2.11)

We call e the conserved energy per unit rest mass and l the conserved angular momen-

tum per unit rest mass. Further, for brevity, d xµ/dλ would be referred to as uµ

Another equation is provided by the dot product of the photon four-velocity2

u⃗.u⃗ = gµν
d xµ

dλ

d xν

dλ
= 0 (2.12)

Since angular momentum l is conserved, the orbit is confined onto a plane. We can set

our coordinates such that the orbital plane corresponds to θ = π/2. This simplifies the

summation

−
(
1− 2GM

c2r

)
(ut )2 +

(
1− 2GM

c2r

)−1

(ur )2 + r 2(uφ)2 = 0 (2.13)

We can substitute ut and uφ into (2.13) in terms of the conserved quantities (2.11). This

yields

−
(
1− 2GM

c2r

)−1

e2 +
(
1− 2GM

c2r

)−1 (
dr

dλ

)2

+ l 2

r 2
= 0 (2.14)

2In case of massive particles, 0 on the RHS gets replaced with −1 and the arbitrary parameter can be
taken as proper-time dτ.
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Or, on multiplying with g t t and rearranging

(
dr

dλ

)2

= e2 − l 2

r 2

(
1− rG

r

)
(2.15)

where rG ≡ 2GM/c2. Since we know dφ/dλ = l /r 2 (for θ = π/2), we can eliminate the

arbitrary parameter from the (2.15) and write

(
dr

dφ

)2

= r 4

l 2

(
e2 − l 2

r 2
+ rG

l 2

r 3

)
(2.16)

A key distinction between massive and massless trajectories in Schwarzschild is that

null-geodesics only depend on the ratio of e and l while trajectories of massive particles

are impacted by each of these conserved quantities individually. This is because of the

freedom in the choosing the affine parameterλ. Physical predictions should not depend

on the parameterization and rescaling λ rescales both e and l in the same way.

Since it is only the ratio that matters, we can choose our units such that e is set to 1

and l becomes l̄ . To avoid writing the bar frequently, hereon, every instance of l would

be referring to l̄ . So, the final photon propagation equation for Schwarzschild geometry

is

(
dr

dφ

)2

= r 4

l 2

(
1− l 2

r 2
+ rG

l 2

r 3

)
(2.17)

If we define a quantity b ≡ |l /e| then b serves as the impact parameter.

b ≡ r 2dφ/dλ

d t/dλ
= r 2 dφ

d t
(2.18)

If we take the limit r →∞ then we can approximateφ≈ d/r where d is the distance from

the x axis (defined such that source of curvature is at the origin and travelling light ray is
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parallel to X-axis at infinity). Further,

dφ

d t
= dφ

dr

dr

d t
= d

r 2
(2.19)

Therefore,

b = d (2.20)

Depending on the choice of units, for the impact parameter to have the dimensions of

length, we include velocity c in the definition (i.e. b ≡ |l /ce|). Due to our re-scaling, l

itself is the impact parameter and it decides the nature of the trajectory. Some example

trajectories have been displayed in Fig. 2.1. Though we have integrated numerically (as

is the case generally), it is worth noting that the photon trajectory equation was solved

in terms of elliptic functions in 2014 [36].

A slightly non-trivial aspect of integrating the photon propagation equation is the

fact that the ODE flips sign during integration. The ODE carries a negative sign as the

ray is integrated from a source at infinity towards the source of curvature (r is decreas-

ing). However, once it reaches the closest point (i.e. derivative dr /dφ approaches zero),

the ODE changes sign and the ray starts moving away from the source of curvature (as-

suming it started with a sufficiently large impact parameter l ). If the impact parameter l

at infinity is less that lmi n = 3
p

3rG then the photon cannot escape the potential well of

the gravitating body.

2.3.2 Beloborodov Approximation

Each patch on the neutron star surface emits light rays in all directions. For each patch,

we are interested in rays that are emitted at an angle such that after lensing they reach

an observer situated at a particular location. Integrating all such rays from the surface to

the observer is wasteful as we would be integrating many other rays that do not reach the
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Figure 2.1: Multiple photon trajectories around an r = rG objec with varying impact
parameters. The red trajectory has an impact parameter l/rG close to lmi n = 3

p
3rG and

it circles around the black hole multiple times before escaping to infinity. The displayed
trajectories were integrated using a fourth-order Runge-Kutta integrator.

observer. Instead, we integrate multiple photon trajectories from an observer at infinity

with varying impact parameter slightly. These trajectories would then hit the source of

curvature located at the center of our coordinate frame at a particular location and a

particular angle. If we look at longitudinal cross section of the neutron star, then the

location where photon trajectory meets the surface can be characterized by the latitude

24



angle φ. Further, the angle at which the trajectory hits the surface is simply the angle

at which a photon would have to escape that surface patch to reach the observer. This

angle we define as α.

In absence of gravitational effects, the relation between φ and α would be simply

φ=α. However, due to lensing, we find there is a bending angle β=φ−α that becomes

relevant and the relation between φ and α becomes non-trivial. The emission angle

α is an important quantity to know because it governs how much of the neutron star

surface would be visible to us. At α = 90o , the ray grazes the surface and reaches the

observer. On the other hand, ifα exceeds 90o , then the photon only reaches the observer

if it travels through the surface of the neutron star, which is not physical. Additionally,

knowing the α associated with each surface patch tells us how much that surface patch

contributes towards the total flux observed at observer’s location. If a patch emits a

flux of F0 then the contribution towards total flux is F0 cos(α). Therefore, we require

a relation between φ and α to be able to predict the contribution of a surface patch

from the knowledge of its location. Finding this relation, however, requires numerically

integrating each relevant trajectory.

Numerically, ray-tracing trajectories to each (discretized) patch of the neutron star

surface for each spin-phase is extremely computationally heavy and has poor scaling

properties. These computational demands become extremely restrictive when one tries

to write inference codes because Bayesian inference over some high-dimensional pa-

rameter space itself is a very hardware heavy procedure (discussed further in §4.1.4).

Beloborodov in 2003 proposed an excellent approximation that by-passes the need

for explicit ray tracing and has become a standard approximation in lensing calculations

[37]. The approximation takes the following form

(1−cosα) = (1−cosφ)
(
1− rG

R

)
(2.21)

where R is the radius of the neutron star. It has been shown that the approximation
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maintains high-accuracy for R > rG and is, therefore, applicable in neutron star con-

texts. The reason for high-accuracy of 2.21 cannot simply be understood as a linear

expansion in terms of a parameter u ≡ rG /R (such an approach leads to a much less

accurate approximation). Instead, as explained in [37], the way to understand the re-

markable accuracy of the approximation is by defining a small parameter x ≡ 1− cosα

and expanding y ≡ 1−cosφ in terms of a power-series xk . On doing so and simplifying

the algebra, we find

y = x

1−u
− u2

112

( x

1−u

)3
− u2

224

(
5

3
−u

)( x

1−u

)4
+O (x5) (2.22)

Notice that there is no x2 term in the expansion. The corrections are only in higher

power with small coefficients that suppress them. Though there is no sufficiently satis-

factory method to motivate such an approximation from first-principles, following re-

sults demonstrate that it remains fairly accurate for a wide range of relevant angles.

We test the accuracy of Beloborodov’s approximation for a given compactness value

by ray-tracing a photon trajectory from infinity until the radial distance from the cen-

ter of the gravitating body becomes equal to the radius of the neutron star R. Then,

we check the last location of the photon to find its location on the surface φ. Finally,

emission angle α can be found using the dot product of the unit radius vector and the

direction of photon 3-velocity at radius R

cosα= r̂ .u⃗3(R)

|u⃗3(R)| (2.23)

On repeating this process for multiple rays of varying impact parameters, we get a trend

between angle of emission and surface location for all rays escaping the longitudinal

cross section of the neutron star that reach the observer (Fig. 2.3). This trend can then

be compared against what Eq. (2.21) approximates.

The comparison of exact and approximate results for R = 2.5rG in Fig. 2.4 shows
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Figure 2.2: Emission angle α measured with respect to the local normal r̂ on neutron
star surface. Note that in this figure ẑ points towards line of sight, instead of x̂. This is
explained in §2.4

that the relative errors remain under 2% for almost entirety of the range that we are

concerned with. A brief point to note, while reading Fig. 2.4, is that the latitude of a

surface patch is equal to the angle between the line of sight and the radial vector because

we assume the observer to be infinitely far from the neutron star (we see neutron stars as

point like sources with no geometrical span). Therefore, all rays connecting the surface

to the observer are parallel to each other.

2.3.3 Modified Beloborodov Approximation

In the trend analysis presented in [37], it is clear that the Beloborodov approximation

drops in accuracy as one approaches more compact neutron stars (i.e. R = 2rG ). How-

ever, the residues post-approximation, when compared against the exact trajectories,

can be fit through a third order polynomial very well. The coefficients of the third-order

polynomial depends on the trend of the residues with respect to angle φ which in turn

depends on the compactness of the neutron star. If one computes exact trajectories for a

series of compactness values and observes the trend of the polynomial coefficients that
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Figure 2.3: Photon trajectories for some impact parameters reaching neutron star sur-
face integrated to find relation between emission angle α and surface location φ.

best fit the residues, one realizes that the trend in coefficients itself is modelled well by

a third-order polynomial of the following type.

y = A(R)x3 +B(R)x2 +C (R)x +D(R) (2.24)

We performed these computations and the trend in the coefficients, along with the best-

fit polynomial, is displayed in Fig. 2.5. Each correction coefficient is then a function

parameterized by four constants. The one-time computation of these twelve constants

which can be done with minimal costs (e.g. 5 compactness values and 80 rays for each
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Figure 2.4: Comparing the exact and approximate relations between emission angle α
and emission latitude φ

compactness) then provides us a fast improvement over Beloborodov’s original approx-

imation. Some of these results have been presented in Fig. 2.6 and 2.7 (Y-axis in top two

quadrants in these figures is represented in radians). The coefficients generated that

characterize the correction terms (truncated at second decimal) are -



A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4


=



−1.38×10−8 1.26×10−7 −4.01×10−7 4.59×10−7

3.18×10−6 −2.82×10−5 8.60×10−5 −9.24×10−5

−1.93×10−4 1.68×10−3 −4.98×10−3 5.14×10−3

2.83×10−3 −2.44×10−2 7.11×10−2 −7.02×10−2


(2.25)

Notice the higher order correction terms are many orders of magnitude smaller than the

linear and quadratic correction coefficients and, for parsimony, can be ignored. Lastly,

before moving to polarization transport aspects of the calculation, we would like to men-

tion that the most recent comprehensive review of various approximation methods to
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Figure 2.5: Coefficients characterizing the fit through Beloborodov approximation’s
residues follow a fourth-order polynomial sufficiently tightly. The coefficients of each
individual fit are displayed in Eq. (2.25)

photon propagation can be found in [38].

2.4 Polarization Transport

We start with the assumption that the magnetic field of the neutron star can be approxi-

mated by a dipole m̂ and that the star is asymmetric across m̂. Though the degree of lin-

ear polarization is Lorentz invariant, polarization angle itself can depend on the choice

of the basis in which one measures the Stokes parameters.

We define a coordinate system (x, y, z) such that the z-axis points towards the line

of sight (unlike Fig. 2.3 where x-axis was directed towards line of sight). Direction of x̂

vector is fixed by the constraint that we want magnetic dipole m̂ (sometimes referred to
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Figure 2.6: For R = 2.1rG , comparing exact results with approximations. The red line in
bottom-left represents the fit through residues formed using the coefficients generated
by the fits given in Fig. 2.5

as the axis of symmetry) to lie in the x−z plane (see Fig. 2.8). This is the reference frame

in which we will define the total flux FI , flux in Q Stokes parameter FQ and U Stokes

parameter FU . The observed degree of linear polarization is defined (by convention) as

PL =−FQ

FI
(2.26)

If the polarization is perpendicular to the projection of m̂ in the sky-plane, we get FQ > 0

and PL < 0. Otherwise, for polarization parallel to the projection of m̂ in the sky-plane,

we have FQ < 0 and PL > 0. Since ẑ is the direction of propagation of the radiation,

there is no polarization along z-axis and FU component remains zero in this coordinate

system. This is also follows from neglecting circular polarization. Further, FQ now be-
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Figure 2.7: Same analysis as in Fig. 2.6 but now for R = 3.0rG . Note for larger star radii,
Beloborodov itself is a good approximation, though the correction term provide further
improvements.

comes a function of the angle between line-of-sight and m̂ because it characterizes the

projection of m̂ onto x̂.

As we demonstrated in §2.3.2, the observed wave-vector (which is parallel to ẑ) is

inclined at a bending angle β with respect to the emitted wave-vector k̂ ′. We found

the bending angle β = φ−α to be a function of the position of emission3 φ and angle

between k̂ ′ and local normal r̂ at emission point. We also found, in Schwarzschild ge-

ometry, φ always exceeds α leading to partial visibility of the ‘back’ hemisphere.

3In the coordinate system with ẑ parallel to line of sight, φ becomes the co-latitude of the emission
point (as opposed to being simply the latitude in earlier coordinate system).
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Figure 2.8: Un-primed global coordinate system (x, y, z) with the magnetic dipole axis
m̂ on the x − z plane and ẑ pointing towards line of sight. Ω̂ is the rotation axis, η is the
angle between line of sight and magnetic dipole axis and ν is the angle between rotation
axis and magnetic dipole axis.

2.4.1 Constraints on Polarization Parallel Transport

For discussions of polarization in GR contexts, it is helpful to remember that a polariza-

tion four-vector E µ (function only of 3-wavevector) can be defined using the solution

for the electromagnetic four-potential A µ wave-equation.

□A µ = 0 =⇒ A µ = E µe−i kµxµ (2.27)
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But how is a spin-1 Boson described by the four-components of E µ? This is possible

because there are only two independent components of the photon polarization vector

with others components being constrained by various gauge requirements. First, sat-

isfying the Lorenz gauge condition leads to the following result which constraints the

number of independent components to three.

∂µA
µ = 0 =⇒ kµE

µ = 0 (2.28)

This means the polarization four-vector remains orthogonal to the wave 4-vector. Then,

exercising the additional gauge transformation

Aµ→A ′
µ =Aµ+∂µΛ (2.29)

where Λ is an arbitrary scalar that satisfies the wave-equation □Λ= 0 to ensure Lorenz

gauge. We fix this scalar as

Λ= i ae i kµxµ (2.30)

Considering that the following transformation (called the Coloumb gauge transforma-

tion) should also keep the physics unchanged

Eµ→ E ′
µ = Eµ+akµ (2.31)

allows us to set E 0 = 0 so that the Lorenz gauge condition can be written entirely in terms

of the orthogonality of polarization and wave three-vectors.

k⃗.E⃗ = 0 (2.32)
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This polarization 4-vector E can now be parallel transported along a photon’s null-geodesic

to find how it transforms.

In 1975, Serge Pineault showed that the polarization vector, as measured by static ob-

servers, keeps a fixed orientation with respect to the angular momentum vector of the

ray trajectory. This can be shown either through direct calculations (as done by Pineault

in his PhD thesis) or by employing symmetry arguments [30]. Angular momentum vec-

tor here is defined as the normal to the plane of the ray-trajectory. Note that this as-

sertion demands spherical symmetry because only then can we guarantee trajectories

remain constrained on a plane. This result also implies that the polarization rotates in

such a way that the angle with respect to the normal to trajectory plane remains con-

served. This is an extremely helpful result because it means that nothing fundamentally

changes in the plane where polarization bases are defined. It is the plane itself that ro-

tates due to the bending of light. Without the bending of light, then, the angles χo and

χe = χo +π/2 would also remain conserved. In fact, the observed angle of polarization

in ordinary mode would precisely be the angle that the magnetic field B⃗ makes with the

projection of m̂ on the x − y plane (i.e. the sky plane) since ẑ is parallel to the rectilinear

wave trajectory k̂ .

χobs
o = ξ= tan−1(By /Bx) (2.33)

2.4.2 Local Coordinate Frames

Now with the bending of light, we need to find how the orientation of the polarization

plane changes. To begin, we define a new coordinate (local) system (x ′, y ′, z ′) such that

ẑ ′ is parallel to the (bent) photon trajectory k̂ ′ and the photon trajectory is constrained

to the x ′− z ′ plane. Finally, ŷ ′ is simply defined using the cross product of the two fixed

unit vectors of this coordinate system (see Fig. 2.9). The connections between the local

coordinate system (primed) with the global coordinate system (un-primed) can be made

35



using using just two angles.

1. cosβ= cos(φ−α) = k̂.k̂ ′ defines the bending angle between a ray bent due to grav-

itational effects and a ray propagating straight towards line of sight ẑ.

2. cosθ = x̂.x̂ ′ = ŷ .ŷ ′ = r̂ .x̂ is the azimuthal angle of the surface position vector r⃗

measured with respect to x-axis [27].

Figure 2.9: Primed local coordinate system (x ′, y ′, z ′) defined on the neutron star surface
with ẑ ′ pointing towards k̂ ′. The photon trajectory is constrained on x ′− z ′ plane and θ
is the azimuthal angle measured in the global coordinate frame.

36



This gives the transformation between the two coordinates as


x̂ ′

ŷ ′

ẑ ′

=


cosθcosβ sinθcosβ −sinβ

−sinθ cosθ 0

cosθ sinβ sinθ sinβ cosβ




x̂

ŷ

ẑ

 (2.34)

Now, using the knowledge that the angle between polarization vector and ŷ ′ is conserved

[30] and that polarization vector is perpendicular to ẑ at the point of observation, we can

relate the polarization of the emitted and the observed radiation via the simple expres-

sion [27]

χobs
o = ξ′+θ (2.35)

where ξ′ = tan−1(By ′/Bx ′) is the azimuthal angle that the projection of the magnetic field

B⃗ onto the x ′− y ′ plane makes with the x̂ ′. This angle ξ depends on the bending angle β

and azimuthal location θ. In large R limit where GR effects are negligible, ξ′ → ξ−θ (and

as expected from earlier results χobs
o → ξ).

2.4.3 Dipole Magnetic Field in Schwarzschild

To compute the angle ξ′, we need a model of how the magnetic field vector varies across

the surface (for more details on magnetic fields on neutron stars [39]). As mentioned

earlier, we start by approximating neutron star’s magnetic field as a dipole. The Maxwell

equations for a dipole source can then be solved in a Schwarzschild spacetime as pre-

scribed in [27, 40, 41] to get

B⃗ = BP

2

(
(2+ f )(r̂ .m̂)r̂ − f m̂

)
(2.36)
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where BP is the magnetic field strength at the poles of the dipole and f is a parameter

that arises due to GR effects and can be expressed in terms of the ratio u = rG /R

f = 2
u2 −2u −2(1−u) ln(1−u)

(u2 +2u +2ln(1−u))
p

1−u
(2.37)

In the non-relativistic case, f becomes 1 and the field strength of the dipole at its equa-

tion becomes half of the field strength at its pole. Alternatively, we can define an angle

cosγ= r̂ .m̂ and write the magnetic field in terms of its radial Br and tangential compo-

nents Bθ

Br = Bp cosγ (2.38)

Bθ =
BP

2
f sinγ (2.39)

Since f is positive definite, the action of GR correction on the magnetic field is simply to

make the B⃗ field more tangential. For our calculations, it is more convenient to have a

representation of B⃗ in terms of (x, y, z) and (x ′, y ′, z ′) instead of r̂ and m̂. These too can

be found easily by noting

r̂ = sinφcosθx̂ + sinφsinθ ŷ +cosφẑ (2.40)

and for some given angle η between line-of-sight and magnetic axis m̂

m̂ = sinηx̂ +cosηẑ (2.41)

However, for a general rotating neutron star, the angle η is a function of the spin phase

and depends further on the offset of the magnetic axis m̂ from the spin axis Ω̂. If we

define the angle between line of sight ẑ and neutron star spin axis Ω̂ as ζ and the angle

between magnetic axis m̂ and spin-axis Ω̂ as ν, then the projection of the spin axis onto
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line of sight changes as

cosη= cosζcosν+ sinζsinνcosΦ (2.42)

whereΦ is spin-phase of the neutron star. We can further write spin-phase as a function

of time using the parameters angular velocity ω or pulsar period T as

Φ=ωt = 2π(t/T ) (2.43)

2.5 Solving for Polarization Pulse Profiles

To finally model how polarization properties for neutron stars vary with spin-phase, we

start by discretizing the neutron star surface into a mesh. Then, for each (φ,θ) location,

we find the corresponding α for that patch using the Beloborodov approximation Eq.

2.21 and the polynomial residue fit. Then, we calculate the unit radial vector r̂ for that

location patch. Using r̂ (Eq. 2.40) and m̂ (Eq. 2.41), we find B⃗ in primed coordinates

(using Eq. 2.36) and, then, in un-primed coordinates (using Eq. 2.34). B⃗ in primed

coordinates will help in calculating ξ′ which finally gives χobs
o (using Eq. 2.35).

Now, to compute the Stokes parameter, we need to calculate the normal mode’s de-

gree of linear polarization pL (using Eq. 2.5) which requires us to compute two more

quantities - θB (angle between wave-vector k̂ ′ and magnetic field B⃗) and B (strength of

the magnetic field). We do so using

θB = cos−1(Bz ′/B) (2.44)

The strength of the magnetic field is computed (with GR corrections) using cosγ= r̂ .m̂

B = (BP /2)
√

(4− f 2)cos2γ+ f 2 (2.45)
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This is needed to find the cyclotron energy which goes into computing q factor. Then,

we integrate over the entire visible surface using the definition of Stokes parameter

FQ = R2gr

∫ π/2

−π/2
dαcosα

∫ 2π

0
dθ(Io − Ie )pL cos(2(ξ′+θ)) (2.46)

where we have included additional gravitational redshift factor gr = √
1− rg /R to ac-

count for the change in photon energy from emission E ′ to observed E .

Finally, we repeat this process for the entire range of spin phaseΦ to generate a pulse

profile of flux observed in Q stokes parameter, which in turn provides us with the ob-

served degree of linear polarization PL =−FQ /FI . These calculations have been fed into

the Polarization Transport Code (described in detail in the Appendix) and the results

generated are discussed in the following chapter.
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Chapter 3

Results of Polarization Transport

In this chapter, we present the results generated by the Polarization Transport Code (which

performs the calculations described in Chapter 2). The dependence of polarization pulse

profiles for neutron star pulsars on characteristic angles (between dipole moment and

spin axis ν and line of sight and spin axis ζ), compactness factor, magnetic field strength,

photon energy and source function are discussed.

3.1 Normal Mode Polarization

Before talking about how polarization gets transported and what pulse profiles an ob-

server should expect, it is helpful to first discuss polarization of the emissions on the

Neutron star’s surface for the two normal modes Io and Ie . Following the discussion in

§2.1, the degree of linear polarization for normal modes have been shown in Fig. 3.1.

These results demonstrate that for photon energies lesser than the ion cyclotron en-

ergy (E < 6.32(B/1015)), the normal modes Io and Ie remain linearly polarized for a wide

range of angles. The dashed white lines represent the general order of magnitude of soft

x-ray observations. While neutron stars with weaker magnetic fields would demonstrate

highly polarized emissions in softer regimes of x-ray, neutron stars with strong magnetic
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fields are great targets for polarimetery even in higher photon energies1.

Figure 3.1: Degree of normal mode polarization shown for varying photon energies (as
measured on neutron star surface before redshift) and angles θB between emitted pho-
ton and local magnetic field for four stars with different magnetic field strengths (as
measured on the poles).

3.2 Geometry Dependence

Orientation of the magnetic dipole moment m̂ and rotation axis Ω̂ with respect to the

line of sight ẑ can lead to drastically different pulse profiles, even if other physical pa-

1Note that this general trend gets disrupted for certain specific values of B , E and θB (as show by the
inward horizontal dips in last plot of Fig. 3.1). This is also discussed in [31].
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rameters like field strength, compactness, etc. are held to be the same. In fact, on the

basis of how many pulsar poles are visible to the observer, we can create four distinct

categories of pulsars [37]. If we define an κ and ϵ such that

κ≡ rG

R − rG
ϵ= cos−1κ (3.1)

Then we get the following four possible pulsar categories depending on our line of sight’s

orientation with respect to spin axis and the angular offset between spin axis and mag-

netic dipole moment (see Fig. 3.2).

1. Type 1 (cos(ζ−ν) > κ): One pole visible at all times. Antipodal pole never comes

in view.

2. Type 2 (−κ< cos(ζ+ν) < κ< cos(ζ−ν)): One pole is visible at all times. Antipodal

pole contributes to total flux for some fraction of the spin phase.

3. Type 3 (cos(ζ+ν) < −κ): One pole moves out of view for some time followed by

visibility of only the opposite pole.

4. Type 4 (−κ< cos(ζ+ν) or cos(ζ−ν) < κ): Contributions from both poles are in view

at all times.

Assuming isotropic emission from the neutron star surface purely in ordinary modes,

polarization pulse profiles were generated. The effect on percentage modulus of degree

of linear polarization due to varying characteristic angles in this simple emission model

is displayed in Fig. 3.3.

Certain salient features of pulsar polarization observations become manifest natu-

rally from these results. The maximum degree of linear polarization is achieved when

the magnetic dipole moment is maximally offset by the spin axis at 90o . Further, if the

dipole moment is parallel to the spin axis then the observer receives a constant degree of

linear polarization throughout the spin phase evolution. The orange curve in top-right
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Figure 3.2: Depending on the characteristic angles and the compactness factor of the
neutron star, observed pulsating flux may have contributions from only one pole at all
times, both poles but with one pole contributing only for some part of the pulse, both
poles but only one pole contributing at a time or both poles with each contributing at all
times. This provides a natural classification of pulsars into Type 1, 2, 3 and 4 respectively.

plot in Fig. 3.3 is a pulsar of Type 1 (i.e. only one magnetic pole contributes towards

the net polarization at all spin phases). In rest of the cases displayed in the figure, we

see degree of linear polarization displays two maxima corresponding to the two mag-

netic poles. The maximum variation in degree of linear polarization is apparent when

the dipole moment is maximally offset with respect to spin axis and line of sight is per-

pendicular to the spin axis. This means we see the polarization contributions from a

magnetic poles during the maxima and during the minima both magnetic poles con-

tribute minimally.
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Figure 3.3: Polarization dependence on characteristic angles for a model neutron star
emitting at constant intensity in purely ordinary mode. The compactness factor fixes
the constants ϵ= 60o and κ= 0.5.

3.3 Compactness Dependence

In a similar constant intensity in ordinary mode approximation, we will now vary the

compactness and verify whether we can find signatures of the qualitative guess made

in the previous chapter. For this examination, we fix the characteristic angles at ν= 45o

and ζ = 60o and the maximum magnetic field strength at 1011 Gauss. The pulse pro-

files are generated for photon energy of 1KeV. From Fig. 3.4, we clearly see that changes

in compactness create minimal changes in the visual appearance of the pulse profiles.

However, on observing a zoomed in section of the pulse profile, it can be deduced that

that bigger neutron stars (i.e. with lower compactness factor) reach higher degrees of

linear polarization. This is compatible with the prediction made earlier that higher com-

pactness would lead to more mixing of differently polarized emissions from the surface

- leading to a decrease in the net linear polarization. Therefore, in principle, given a

mechanism to estimate field strength and a radiative transfer model for NM polarization
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in NS atmosphere and having performed pulse profile modelling to find characteristic

angles, it is indeed possible to use polarimetric observations for putting a bound on the

compactness factor of neutron stars.

Figure 3.4: Polarization dependence on compactness for a model neutron star emit-
ting at constant intensity in purely ordinary mode. The results are generated for κ =
0.83, 0.71, 0.62, 0.5. Since cos(ζ+ν) =−0.25 and cos(ζ−ν) = 0.90, all the profiles are for
a Type III pulsar demonstrating two distinct maxima.

3.4 Magnetic Field Dependence

The effects of both magnetic field and photon energy can already be inferred from the

results shown in Fig. 3.1. Stronger magnetic field strengths raise the ion cyclotron energy

EBi . Therefore, if we restrict ourselves to observations in a particular photon energy,

decreasing magnetic field would decrease the range of angles θB over which the normal

modes become linearly polarized. We can verify these results through the polarization
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profiles generated by varying magnetic fields for a star of radius 2.5rG shown in Fig. 3.5

at photon energy of 1KeV. The pulses have been simulated for two complete rotations

of the neutron star to show the periodicity of polarization variations more clearly in this

case.

Figure 3.5: Variations in percentage degree of linear polarization calculated for two full
rotations for constant emissions purely in ordinary modes (R = 2.5rG ). Characteristic
angles are fixed at ν= 45o and ζ= 60o .

Immediately, from Fig. 3.5 we can infer that magnetic field strength raises both the

maxima and minima of the degree of linear polarization a particular photon energy for

some set characteristic angles. Another observation is that raising the magnetic field

strength also ‘smoothens’ the variation in pulse profiles because a larger range of θB

now leads to polarized normal mode emissions. Therefore, on summing up the polar-

ization contributions from the surface patches, we find that each patch contributes its
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polarization in a smoothly varying fashion as the field strength decays from the poles to

the equator along with their cosαprojections. On the other hand, if we look at the lowest

magnetic field strength that is calculated in the figure, we find signatures that resemble

random fluctuations. Note that there is no stochasticity in our calculations. Yet, when

ion-cyclotron energy becomes comparable to that of the relevant soft x-ray photons,

normal modes are linearly polarized for some narrowly defined angles between emis-

sion and local magnetic field. This is also reflected globally in the (blue) pulse profile

through its sharper maxima at specific rotation phases (as opposed to a smooth climb

in stronger field simulations).

3.5 Photon Energy Dependence

Photon energy and magnetic fields are complimentary and enter into the polarization

calculations in similar places. This is made clear if we look at the results generated for

R = 2.5rG , ν = 45o and ζ = 60o in Fig. 3.6. We find that increasing the photon energy

decreases the degree of linear polarization. We can interpret this results, further, by not-

ing that we are looking at emissions due to scattering. It is the scattered bits of radiation

that are linearly polarized and contribute towards the net linear polarization. However,

as the photon energy increases, the scattering cross section decreases. Therefore, the

linearly polarized contribution towards the net emission decreases with an increase in

photon energy.

Additionally, it can be observed that the effects of increasing photon energy by an

order of magnitude is precisely the same as decreasing the magnetic field strength by

an order of magnitude (follows from the equation for normal mode polarization Eq.

2.5). Naturally, this behavior raises the concern about possible degeneracy in devel-

opment of inference methods since two very different parameter choices yield precisely

the same polarization profiles. A further narrowing down of the potential parameter

space is made possible due to the fact that observations of the same object can be per-
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Figure 3.6: Results demonstrating the effects of varying magnetic field strength and pho-
ton energy on degree of linear polarization for fixed compactness and characteristic an-
gles.
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Figure 3.7: Simulated degree of linear polarization for a neutron star displayed as a heat-
map across spin-phase and photon energy for an x-ray spectral band. Characteristic
angles are fixed at ν= 45o and ζ= 60o .

formed in a range of possible wavelengths. Thus, for any given object we have an entire

family of pulse profiles. An example of such variations across a spectral band (assuming

constant spectral intensity) is displayed in Fig. 3.7.

3.6 Source Function Dependence

Finally, the polarization pulse profiles must reflect features of intensity distribution across

the normal modes and its spatial variation on the neutron star surface. In the results

preceding this subsection, we had assumed constant emission intensity throughout the

neutron star surface purely in ordinary modes. If we perform the same exercise but with

purely extraordinary mode emissions, it follows from the definition of the Stokes pa-

rameters (Eq. (2.4)) that we would get the precisely the same kinds of variations in pulse
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profiles but with a negative sign instead. As mentioned earlier, the sign of PL =−FQ /FI

corresponds to the orientation of the observed polarization with respect to the plane of

the sky. Since we have been plotting the modulus of the degree of linear polarization,

all the graphs presented in this chapter would look precisely the same after swapping Io

with Ie . However, in realistic settings, emissions are not purely in ordinary or extraordi-

nary modes. Instead, there is a location dependence on these quantities which can be

computed via radiative transfer calculations (see §4.1.1 for a quick overview).

Even without including radiative transfer, we can further study the dependence of

polarization profiles by discarding out constant emission assumption. Two standard

approaches are the Gaussian Hotspot model of surface emission and the Hollow Cone

model of surface emission. In both these cases, Io and Ie becomes functions of the cylin-

drical radius measured with respect to the magnetic dipole moment.
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Chapter 4

Discussion and Conclusion

In this chapter, we briefly discuss the possible directions in which the current project can be

extended. This involves an elementary exposition of performing realistic radiative trans-

fer calculations, solving for a neutron star metric, including effects of vacuum birefrin-

gence and adding Bayesian inference functionality. We end this chapter by mentioning

two space-based missions (one active and one scheduled) which can provide observa-

tional insights relevant to the x-ray polarimetery of neutron star pulsars.

4.1 Scope for Future Work

The current work on polarization transport near neutron stars can be extended in mul-

tiple directions, both in terms of doing more physics and adding further functionality.

Some prospects for relevant extensions are discussed in the subsequent subsections.

4.1.1 Radiative Transfer

We have been working with simple source functions and emission models because we

were primarily interested in the gravitational effects during the transport phase on the

polarization vector. However, to more accurately model a realistic setting, we would like

to employ our understanding of emission spectra in ordinary and extraordinary modes
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and their variations with respect to surface location. These details can then be fed into

the polarization transport code directly to generate the pulse profiles.

X-Ray emissions from neutron stars can be distinguished into non-thermal contri-

butions (due to synchrotron and inverse Compton processes) and thermal contribu-

tions. Details on polarized radiation transfer in neutron star surface layers can be found

in Barchas et al [42].

The general approach towards modelling NS atmospheres with and without inclu-

sion of magnetic effects is broadly the same, except with magnetic fields present, we

consider the polarization modes of radiation separately. This is important because ra-

diative opacities depend on polarization. In such cases, the method of solving radia-

tion transfer is described in §9.3.4 of [33]. Suppose the spectral intensity in two normal

modes for frequency ν are Iν,1 and Iν,2. We write the following integro-differential equa-

tion

µ
d

d z
Iν, j (n⃗) = kν, j (n⃗)Iν, j (n⃗)−

(
2∑

i=1

∮
dn⃗′Iν,i (n⃗′)σν,i j (n⃗′, n⃗)+αν, j (n⃗)

Bν

2

)
(4.1)

where n⃗ is the unit wave-vector, σν,i j is the scattering opacity from mode i to j (see

[32] for more details), kν, j = αν, j (n⃗)+∑
i
∮

dn⃗′σν,i j (n⃗′, n⃗) is the total opacity, αν, j is the

absorption opacity for j mode and Bν is the Planck function. Next, we also assume that

the atmosphere are radiative with the total energy flux being transferred solely through

radiation and determined by effective surface temperature Te f f

∫ ∞

0
dν

∫ 1

−1
µIνdµ=σSB T 4

e f f (4.2)

where σSB is the Boltzmann constant and µ is the projection factor of the local normal

onto the wave-vector going outwards (see §??). Finally, we can also solve for the hy-

drostatic equilibrium of the atmosphere to get the variation of pressure with respect to
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height z. In the plane-parallel approximation, this just becomes

p = g z (4.3)

where g is the acceleration due to gravity. To account for GR effects, this can be com-

puted numerically. However, considering neutron star atmospheres are extremely thin,

this is a good enough approximation. In practice, numerically solving radiative trans-

fer equations happens in two-steps. First, one employs a diffusion approximation [33]

and uses it to compute atmospheric structure. This solution is then fed into the exact

equations and the process is repeated iteratively. Under right conditions, the algorithm

relaxes to a solution of desired accuracy.

Computing spectral intensity of both thermal and non-thermal contributions in pres-

ence of very strong magnetic fields (which, for instance, would disturb the ionization

equilibrium of NS atmospheric plasma) requires an involved effort. Codes have been

developed which can perform such calculations efficiently (such as MAGTHOMSCATT

[28]). Interfacing the polarization transport code with a radiative transfer module would

then be a valuable extension to the current state of the project. Some additional infor-

mation on models of magnetized neutron star atmosphere can be found in [43, 44] and

radiative transfer calculations for neutron star mergers can be found in [45, 46].

4.1.2 Neutron Star Metric

As mentioned earlier, Schwarzschild metric only provides an approximation to the light-

bending near neutron stars. A more complete approach towards the problem could start

with, say, the Hartle-Thorne metric to first numerically solve for null-geodesics in it and

then to compute the polarization parallel transport along those geodesics. The Hartle-

Thorne metric [47] is the spacetime metric that describes the exterior geometry of a

slow rotating rigid body. It is an approximation to the Kerr metric with the quadrupole
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moment set to 0 (which is valid for black-holes but not in general). Following Hartle and

Thorne, there were many more attempts to describe spacetime exterior to NS by analytic

stationary and axissymetric metrics. Many of these attempts follow the algorithm to

produce the metric using Ernst potential [48]. In 2016, Pappas proposed an accurate

metric for exterior of neutron stars [49]. Another proposal for an all-purpose metric can

be found in [50] (see [51] for further discussion on generating these metrics).

Choosing an appropriate metric is only the first step in solving the polarization trans-

port problem. Once a metric is found, the next step is to find the equivalent photon-

propagation equation. Without spherical symmetry, these photon orbits are not re-

stricted to a plane anymore1. Then, for performing these computations in a reasonable

amount of time on a personal computer, one must ideally search for an appropriate ap-

proximation (such as the one proposed by Beloborodov for Schwarszschild). It is only

then that we would be ready solve the polarization transport problem in the more gen-

eral metric.

4.1.3 Birefringence Through Distorted Fields

In our analysis, we have ignored the effects of vacuum birefringence. Vacuum birefrin-

gence is a prediction of Quantum Electrodynamics as per which, in the presence of mag-

netic fields stronger than a critical value BQED = 4.4× 1013G , vacuum itself acts a like

birefringent medium and decouples the two polarization modes of the radiation pass-

ing through it. In other words, it means that the refractive index of one polarization

mode differs (significantly) from the refractive index experienced by another polariza-

tion mode. For our analysis, this would imply a higher degree of linear polarization than

expected for a given neutron star. Kubo and Nagata in 1983 showed that the polarization

1See this blog post by Leo C Stein for an interesting discussion on Kerr Photon Orbits
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of wave travelling through a birefrigent and dichroic medium in geometric limit is

∂⃗s

∂λ
= Ω̂× s⃗ + (T̂ × s⃗)× s⃗ (4.4)

where s⃗ = (Q/I ,U /I ,V /I ) is the Stokes vector, λ is the proper distance along the tra-

jectory and Ω̂ and T̂ are birefrigent and dichroic vectors respectively. Heyl et al. argue

that on ignoring plasma and taking weak-field limit, dichroic vector vanishes [52]. The

magnitude of the dichroic vector, then, becomes

|Ω̂| = 2

15

η

4π

ω

c

(
B⊥

BQED

)2

(4.5)

where B⊥ is the magnitude of that component of the magnetic field which is perpendic-

ular to the direction of photon propagation and η is the angle between line of sign and

magnetic dipole vector m̂. The birefringent vector ω̂ points towards the projection of

magnetic field onto the Poincare sphere. These effects further morph the polarization

information before it reaches an observer.

Magnetars are natural laboratories where one can test vacuum birefringence predic-

tions. In fact, Migani et al in 2016 claimed to have presented present evidence of bire-

bringence in optical polarimetery data of isolated neutron stars [53]. On the other hand,

if this aspect of QED is to be trusted at face value, then inclusion of vacuum birefringence

in our calculations can help in constraining the magnetic field strength of neutron stars.

Therefore, an additional module that performs vacuum polarization calculations before

generating the Stokes parameter pulse profiles would be a valuable addition. Further

discussions on the topic of vacuum polarization in the context of neutron stars can be

found in [29, 54].
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4.1.4 Bayesian Inference

With the polarization transport code, we can predict what polarimetric data we would

expect given a neutron star model. In practice, however, we are presented with the in-

verse problem i.e. to narrow down the space of possible models and see which parame-

ters fit the observational data best. This is the domain of Bayesian inference and a size-

able fraction of computational astrophysicists working on pulsar data employ Bayesian

techniques in their research[55, 56]. A helpful pedagogical introduction to Bayesian In-

ferences in the context of astrophysics can be found in [57]. The general idea is simply to

employ the Bayes Theorem for conditional probabilities and compute Bayes factor for

comparing between models. The Bayes Theorem states

P (θ|Y ) = P (Y |θ)P (θ)

P (Y )
(4.6)

where P (Y |θ) is the sampling distribution for some data Y given the model θ, P (θ) is the

prior probability of the model itself and P (Y ) is the prior predictive probability (which

is often ignored after the process of marginalisation). We use these to compute the like-

lihood function P (Y |θ).

The family of polarization profiles for a given object depends on many variables

(like characteristic angles, surface polarization map, magnetic field variation, etc.) and,

hence, sampling any sufficiently large parameter space to find the model best fitting

the data becomes a very computationally challenging problem (see [58] for a brief re-

view of various sampling techniques used to compute likelihood). Fortunately, gener-

ating polarization profiles is a problem that can be easily parallelized. On six-cores of

a personal laptop, six polarization transport simulations can be run in parallel2. How-

ever, if one has access to appropriate computing resources (which further depends on

how fine-grained the surface mesh is), instead of iterating through individual patches

of the surface in a given spin phase, polarization contributions from all of the surface

2This is, in fact, how the polarization transport code is currently set-up to run
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patches can be projected onto observer’s location simultaneously. Further, if one has

access to even better resources, all of the spin phases for a given star can be computed

simultaneously too. These speed-ups would drastically improve the performance of an

inference code and our ability to process through pulsar polarimetric data quickly. Such

performance improvements and, later, interfacing with an inference engine could be yet

another valuable extension of the program’s current functionality.

4.2 Future Observations

The current analysis is only valid for isolated neutron stars. To date, we have found

seven candidates for isolated X-Ray pulsars and they are informally called the ‘Magnifi-

cent Seven’ [59]. Performing polarimetery on X-Ray sources is, however, an experimen-

tal challenge (polarimetery requires a large number of photons) and we have only re-

cently acquired the technological capacity to perform such studies. As of now, there are

two relevant missions (one active and one planned) designed to acquire polarimetric

data3 which could be used in conjunction with Bayesian inference and the techniques

described in this thesis. I discuss these briefly in the following subsections.

4.2.1 Imaging X-Ray Polarimetery Explorer (IXPE)

IXPE (Fig. 4.1) is a (relatively) small-scale NASA mission for studying polarization prop-

erties of astrophysical objects. Its primary observation targets are neutron stars, pulsar

wind nebulae and black-holes, with a sensitivity in the 2-8 KeV range. It was launched

on December 9, 2021 with a mission duration of 2 years and entered service on January

10, 2022. Initial results about birefringence from observations of 4U 012+61 have already

been released [60]. Polarimetric resolution of IXPE is already a two order-of-magnitude

3In the meanwhile, before observational data from these missions becomes accessible to public, polar-
ization transport code can generate mock data with varying amounts of stochasticity. This functionality
was added to start developing a streamlined interface with some inference modules without having to
wait for observational data.
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improvement over its predecessor Orbiting Solar Observatory (OSO). IXPE employs a

cloud-chamber imaging technique to measure polarization of incoming X-Ray photons,

the details of which can be found in [61]. Another measurement of the core of Centaurus

A suggested a low degree of linear polarization, which indicates radiation coming from

scattering processes instead of accelerated charges in jets [62].

Figure 4.1: Schematic model of Imaging X-Ray Polarimetery Explorer showcasing its
characteristic foldable boom arm. Image Credits: NASA

4.2.2 X-Ray Polarimeter Satellite (XPoSat)

Another observation mission relevant to our discussion is ISRO’s XPoSat which is sched-

uled for launch in the second quarter of 2023 with a five year mission duration. It con-

sists of two primary payloads - an X-Ray polarimeter (POLIX) and an X-Ray Spectroscopy

and Timing instrument (XSPECT). POLIX would be measuring polarimetry parameters

(both degree of polarization and angle) in medium x-ray range of 8-30 KeV photons.

Unlike IXPE, polarimetery on board of XPoSat is performed via anisotropic Thompson

scattering of incoming photons. As per the proposal, POLIX would provide first-ever

views of more than 40 astrophysical objects in medium X-ray range.
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4.3 Epilogue

Our understanding of high-energy phenomena in astrophysical contexts has largely de-

veloped through photometery, spectroscopy and gravitational interferometery. Both

IXPE and XPoSat provide additional observational information on two novel parame-

ters (degree of linear polarization and angle) to resolve certain degeneracies in the the-

oretical models of violent astrophysical phenomena. In the case of neutron star pulsars,

however, we demonstrated mechanisms via which the observational data on polariza-

tion gets morphed. This understanding can aid in analysing the forthcoming data, re-

verse the gravitational morphing and predict what actually was emitted from the neu-

tron star.

Neutron star polarimetery is a fertile field with an interesting theoretical past and

an exciting observational future. We eagerly anticipate the insights this field will reveal

about the fundamental nature of forces, interactions, and matter - about what is and is

not permitted in our universe. We hope that observations of these exotic objects will fill

us with awe and, yet, leave us pondering the mysteries that will confound astronomers,

astrophysicists, and physicists alike. Above all, we await the answers that lie within the

quanta of light, travelling across eons of space to reach us, illuminating secrets long

hidden in the vast void.
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A. Di Marco, I. Donnarumma, M. Dovčiak, S. R. Ehlert, T. Enoto, Y. Evangelista,

S. Fabiani, R. Ferrazzoli, J. A. Garcia, S. Gunji, K. Hayashida, W. Iwakiri, S. G. Jorstad,

V. Karas, T. Kitaguchi, J. J. Kolodziejczak, F. La Monaca, L. Latronico, I. Liodakis,

S. Maldera, A. Manfreda, F. Marin, A. Marinucci, A. P. Marscher, H. L. Marshall,

G. Matt, I. Mitsuishi, T. Mizuno, S. C.-Y. Ng, S. L. O’Dell, C. Oppedisano, A. Papitto,

66



G. G. Pavlov, A. L. Peirson, M. Perri, M. Pesce-Rollins, M. Pilia, A. Possenti, J. Pouta-

nen, S. Puccetti, B. D. Ramsey, A. Ratheesh, R. W. Romani, C. Sgrò, P. Slane, P. Sof-

fitta, G. Spandre, F. Tavecchio, Y. Tawara, A. F. Tennant, N. E. Thomas, F. Tombesi,

A. Trois, S. Tsygankov, J. Vink, K. Wu, and F. Xie, “Polarized x-rays from a magnetar,”

vol. 378, no. 6620, pp. 646–650.

[61] A. Manfreda, “The gas pixel detectors for the imaging x-ray polarimetry explorer

mission,” vol. 1049, p. 168044.

[62] S. R. Ehlert, R. Ferrazzoli, A. Marinucci, H. L. Marshall, R. Middei, L. Pacciani,

M. Perri, P.-O. Petrucci, S. Puccetti, T. Barnouin, S. Bianchi, I. Liodakis, G. Madejski,

F. Marin, A. P. Marscher, G. Matt, J. Poutanen, K. Wu, I. Agudo, L. A. Antonelli, M. Ba-

chetti, L. Baldini, W. H. Baumgartner, R. Bellazzini, S. D. Bongiorno, R. Bonino,

A. Brez, N. Bucciantini, F. Capitanio, S. Castellano, E. Cavazzuti, S. Ciprini, E. Costa,

A. De Rosa, E. Del Monte, L. Di Gesu, N. Di Lalla, A. Di Marco, I. Donnarumma,
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Appendix A

Polarization Transport Code

All results generated in this thesis can be replicated using the Polarization Transport

Code, which is available on this GitHub repository. The repository also contains simu-

lated data which was generated as a part of this project. In this appendix, I provide a

top-level user-guide for the polarization transport code.

The general workflow involving the polarization transport code is presented in Fig.

A.1. We start by choosing a neutron star object from starcatalog.py. We feed this

object to the functions defined in polarizationtransport.py. This is the part of the

code which contains majority of the involved physics. We then perform a ‘virtual ob-

servation’ of this neutron star object by declaring how long do we want to simulate the

pulse profile for, at what photon energy, etc. This would, then, produce the polarization

profiles as seen in some given Stokes parameter.

The functions in polarizationtransport.py further call upon functions defined

in approximations.py which primarily takes care of the lensing calculations using the

modified Beloborodov approximation. It also calls surfacemap.py in case the user

wishes to discharge the constant intensity assumption and work with the Gaussian Po-

larcap or Hollow Cone model of spatial intensity distribution.

The code utilizes python’s multiprocessing functionality to parallelize the virtual

observations. In most of the Jupyter notebooks on the repository, the code is configured
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Figure A.1: Top-level schematic of the workflow with Polarization Transport Code

to utilize six cores of a personal laptop to perform six observations in parallel. How-

ever, depending on the available computing resources, one can modify this easily and

perform as many parallel observations as desired.

Some important and frequently called objects in the code are summarized below -

1. star(R, M, ν, ζ, Bp): Defines a neutron star object with a given radius (in

units of rG ), mass (in units of M⊙), angle between magnetic and spin axis, an-

gle between line of sight and spin axis and magnetic field strength at the poles (in

units of 1012 Gauss).

2. stokes(phase, star, E, res=’low’): Calculates the Stokes parameter for a

neutron star object at a given spin phase and photon energy. The resolution of the

surface grid is, by default, set to ‘low’ at 0.5 gradations in φ and θ. However, this

can be changed to ‘high’ which uses a grid resolution of 0.01 instead. It outputs an

array consisting of flux in Q, U and I Stokes parameters.

3. observation(star, phaseRange, E, I_map=[]): Performs surface integration

over the entirety of a declared phase range. User can provide a surface intensity
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map for inclusion in the calculations. Otherwise, it assumes isotropic emission.

For convenience, a summary of the equations that power the physics module of the

Polarization Transport Code has been presented in Fig. A.2. Finally, for completeness,

Figure A.2: Important equations that are used by the physics module to perform polar-
ization transport

following is the listing of the stokes() function which performs the calculations based

on Fig. A.2 (for constant surface intensity).

1 def stokes(phase , star , E, res=’low’):

2

3 if res == ’low’:

4 dtheta , dphi = 0.1, 0.1 # Low Resolution for testing

5 else:

6 dtheta , dphi = 0.05, 0.05 # Higher Resolution for final

7

8 # unpacking star parameters

9 R, star_nu , star_zeta , B_p = star.radius , star.nu , star.zeta ,

star.B_p
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10

11 # extracting correction coefficients

12 corr_coeff = extract_coefficients(R)

13 phiLim = np.deg2rad (160) # even in the most compact neutron

stars (R = 2), lensing doesn ’t lead to seeing patches beyond 160

deg

14

15 # Initializing Arrays

16 thetaRange = np.arange(0, np.pi, dtheta)

17 phiRange = np.arange(-phiLim , phiLim , dphi)

18

19 dA = R**2* dtheta*dphi # unit area element

20 eta = np.arccos(np.round((np.cos(star_nu)*np.cos(star_zeta) + np

.sin(star_nu)*np.sin(star_zeta)*np.cos(phase)), 12))

21

22 ## Defining m_hat vector components in x, y, z coordinates

23 m_hat = np.array ([np.sin(eta), 0, np.cos(eta)])

24

25 # ratio R_g/R (R already in terms of schwarzschild radius)

26 u = 1/R

27 g_R = np.sqrt(1 - (u)) # gravitational redshift parameter

28

29 # GR correction to magnetic dipole moment

30 f = 2*(u**2 - 2*u - 2*(1-u)*np.log(1-u))/(np.sqrt(1-u)*(u**2 +

2*u + 2*np.log(1-u)))

31

32 # empty list to store flux for each patch

33 FQ , FU , F = [], [], []

34

35 # from each alpha and theta

36 for i in range(0, len(thetaRange)):

37 for j in range(0, len(phiRange)):

38
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39 ## calculate psi (using belo function)

40 a = fastApprox (( phiRange[j]), R, corr_coeff)[0]

41 beta = phiRange[j] - a

42 cosa = np.cos(a)

43

44 if cosa >0:

45 # computing trig functions once for each patch

46 costheta = np.cos(thetaRange[i])

47 sintheta = np.sin(thetaRange[i])

48 cosbeta = np.cos(beta)

49 sinbeta = np.sin(beta)

50 sinphi = np.sin(phiRange[j])

51 cosphi = np.cos(phiRange[j])

52

53 ### r_hat vector components in x, y, z coordinates

54 r_hat = np.array ([ sinphi*costheta ,

55 sinphi*sintheta ,

56 cosphi ])

57

58 ### Defining component transformation matrix

59 T = np.array ([[ costheta*cosbeta , sintheta*cosbeta , -

sinbeta],

60 [-sintheta , costheta , 0],

61 [costheta*sinbeta , sintheta*sinbeta ,

cosbeta ]])

62

63 ## get magnetic field at all points

64 # in the basis vectors of (x,y,z)

65 B_vec = (B_p /2) *((2+f)*np.dot(r_hat , m_hat)*r_hat -

f*m_hat)

66 # in the prime coordinates (x’, y’, z’)

67 B_vec_prime = np.dot(T, B_vec)

68
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69 ## find phi’ using By’ and Bx ’.

70 # phi’ is the angle between the x’ axis and the

projection of B_vec_prime onto the x’y’ plane

71 xi_prime = np.arctan2(B_vec_prime [1], B_vec_prime

[0])

72

73 B = np.linalg.norm(B_vec)

74

75 ## angle between magnetic field and the unit wave

vector at the surface

76 Theta_B = np.arccos(B_vec_prime [2]/B)

77

78 # degree of linear polarization

79 p_L = linear_polarization(Theta_B , B, g_R*E)

80

81 ## compute flux in Q stokes parameter from this area

element

82 FQ.append(g_R*dA*cosa*(I_o -I_e)*p_L*np.cos (2*(

thetaRange[i] + xi_prime)))

83 FU.append(g_R*dA*cosa*(I_o -I_e)*p_L*np.sin (2*(

thetaRange[i] + xi_prime)))

84 F.append(g_R*dA*cosa*(I_o+I_e))

85

86 return np.nansum(FQ), np.nansum(FU), np.nansum(F)
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