DESI, PhantomX and Dark Energy EOS

Kartik Tiwari Prof. Cristiano Porciani Summer 2024

Dark Energy May Be Weakening, Major Astrophysics Study Finds

Dark
Energy
Spectroscopic
Instrument
Claim

Dark Energy May Be Weakening, Major Astrophysics Study Finds

Dark
Energy
Spectroscopic
Instrument
Claim

Our principal point is to highlight a so-farunquantified dependence on model priors.

This new cosmic coincidence [...] *indicates the* chosen prior is not a good representation of the underlying physics

Cortês and Liddle (2024)

What is DESI? What is the claim?

DESI: Instrument

5000 Robotic Eyes at the Sky

DESI: Instrument

SDSS: 20 Years

DESI: Instrument

SDSS: 20 Years

DESI: 7 Months

2.5σ-3.9σ preference for evolving DE over ΛCDM

DESI Team (2024)

DESI Team (2024)

PhantomX Coincidence raises concerns about the claim

Fields with 'negative kinetic energy' (vacuum stability issues)

Non-phantom regime simpler to model (e.g. Quintessence)

PhantomX Coincidence

W < -1

PhantomX Coincidence

Crossing between the two regimes requires a special interpolation

PhantomX Coincidence

Crossing happens in the observation epoch (by a few hundredths)

PhantomX Coincidence

The maximum value dark energy density that would ever reach

happens to lie where data best constrains the model

Substantial Unstated Dependence on Priors

 w_0 $\mathcal{U}[-3,1]$

 w_a $\mathcal{U}[-3,2]$

Models using special interpolations, a priori, as likely as physically motivated ones

Substantial Unstated Dependence on Priors

 w_0 $\mathcal{U}[-3,1]$

 w_a $\mathcal{U}[-3,2]$

Models using special interpolations, a priori, as likely as physically motivated ones

'Tapering [priors] may lessen the coincidence [but] ... reduce discrepancy from \CDM'

No right or wrong priors

But assess robustness against reasonable changes to priors

Thomas Bayes

Replicate DESI Results to, then, investigate influence of priors

DESI

Replication

Tapering the extension of priors into deep phantom regime may

- Lessen the coincidence
- 2. Reduce discrepancy from ΛCDM

Drastically changed prior (~70% reduction)

but

Insignificantly changed posterior

Insignificant reduction in coincidence as well

Can we do better? Reverse engineer priors for lessened coincidence

To "down weight solutions that lie farthest from theoretical expectation"

We must understand the structure of the parameter space better

Restricting to quintessence compatible solutions pulls us closer to ACDM

(quintessence chain partially converged

Major discrepancy at high-z (corresponds to Lyman-Alpha tracer)

Un-converged Chains = Take this with a grain of salt

Internship Outcomes: Science

- PPF solutions preferred strongly over physical models, even against drastic changes in priors
- Quintessence compatible evolving DE solutions lie closer to Lambda-CDM

Nature of w0-wa parameter space

Internship Outcomes: Learning

- Concepts: PPF, Quintessence, Sensitivity analysis, etc.
- Creating custom likelihoods for cobaya

 BONUS: Defining constraints on derived parameters somewhat convoluted. Developed a small script for this (possible pull request, maybe?)

Thank You

github.com/krtktwri kartiktiwari.com

DESI: Survey

Fig 1 in DESI 2024 VI

$$D_{\rm V}(z) = \left(zD_{\rm M}(z)^2D_H(z)\right)^{1/3}$$

Regenerated after sampling 1250 points (~15 hours)

R-1 criteria not met

wCDM					
DESI	0.293 ± 0.015			$-0.99^{+0.15}_{-0.13}$	
$_{\text{DESI+BBN}+\theta_{*}}$	0.295 ± 0.014	$68.6^{+1.8}_{-2.1}$		$-1.002^{+0.091}_{-0.080}$	_
DESI+CMB	0.281 ± 0.013	$71.3^{+1.5}_{-1.8}$	_	$-1.122^{+0.062}_{-0.054}$	_
${\bf DESI+CMB+Panth}.$	0.3095 ± 0.0069	67.74 ± 0.71	_	-0.997 ± 0.025	_
$_{\rm DESI+CMB+Union3}$	0.3095 ± 0.0083	67.76 ± 0.90		-0.997 ± 0.032	_
$_{\rm DESI+CMB+DESY5}$	0.3169 ± 0.0065	66.92 ± 0.64	_	-0.967 ± 0.024	_
$w_0w_a\mathrm{CDM}$					
DESI	$0.344^{+0.047}_{-0.026}$		_	$-0.55^{+0.39}_{-0.21}$	< -1.32
$_{\text{DESI+BBN}+\theta_{*}}$	$0.338^{+0.039}_{-0.029}$	$65.0^{+2.3}_{-3.6}$	_	$-0.53^{+0.42}_{-0.22}$	< -1.08
DESI+CMB	$0.344^{+0.032}_{-0.027}$	$64.7^{+2.2}_{-3.3}$	_	$-0.45^{+0.34}_{-0.21}$	$-1.79^{+0.48}_{-1.0}$
${\bf DESI+CMB+Panth}.$	0.3085 ± 0.0068	68.03 ± 0.72	_	-0.827 ± 0.063	$-0.75^{+0.29}_{-0.25}$
DESI+CMB+Union3	0.3230 ± 0.0095	66.53 ± 0.94	_	-0.65 ± 0.10	$-1.27^{+0.40}_{-0.34}$
DESI+CMB+DESY5	0.3160 ± 0.0065	67.24 ± 0.66		-0.727 ± 0.067	$-1.05^{+0.31}_{-0.27}$

Value	Energy density scaling	Time scaling	Phenomena described	Examples	Topological defect dimensions	Topological defect
w=1	$ ho \propto a^{-6}$	$a \propto t^{rac{1}{3}}$	Free scalar field	Higgs field, dilatons ^[citation needed]	-	-
w=1/3	$ ho \propto a^{-4}$	$a \propto t^{rac{1}{2}}$	Ultra- relativistic particles	Photons, ultra- relativistic neutrinos, cosmic rays	-	-
w=0	$ ho \propto a^{-3}$	$a \propto t^{rac{2}{3}}$	Non- relativistic particles	Cold baryonic matter, cold dark matter, cosmic neutrino background	0	Magnetic monopoles
w=-1/3	$ ho \propto a^{-2}$	$a \propto t$	Curvature	Curvature of spacetime	1	Cosmic strings
w=-2/3	$ ho \propto a^{-1}$	$a \propto t^2$	-	-	2	Domain walls
w = -1	$ ho \propto a^0$	$a \propto e^{Ht}$	Cosmological constant	Dark energy	-	-
w < -1	-	-	Phantom energy	-	-	-

