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1. Introduction

Schrodinger equation governs the time evolution of a quantum wave-function.

iℏ
∂

∂t
Ψ(x, t) = ĤΨ(x, t)

Solving and studying the solutions of Schrodinger equation for various potential distributions is

a significant part of learning introductory Quantum Mechanics. However, analytic closed form

solutions of Schrodinger equation can be found for only a few cases. Even in these handful cases,

finding the analytical solution frequently requires employing mathematical ‘tricks’ which make the

exploration of Schrodinger equation an opaque endeavour for the (already burdened) undergrad.

Therefore, a numerical scheme to solve Schrodinger equation for any arbitrary initial condition

and potential distribution is of immense value as it enables students to simulate and investigate

various quantum mechanical scenarios. In this report, I discuss my general python code for solving

the Schrodinger equation in 1 Dimension and its applications to some well understood interesting

quantum phenomena.

2. Numerical Method

The Time Dependant Schrodinger Equation (TDSE) in 1D is a partial differential equation. There-

fore, clearly a finite difference scheme is required to numerical integrate TDSE. (Robertson) dis-

cusses why the numerical scheme of choice for solving TDSE is the Crank-Nicholson technique. Let

us briefly discuss the algorithm that needs to be implemented in python.

2.1 Crank Nicholson Technique

Crank Nicholson technique is a member of the general family of ImEx (Implicit-Explicit) tech-

niques. Crank-Nicholson has the advantage of being unconditionally stable while not having to

solve complete matrix equations (Baumgarte and Shapiro). This provides us with - at least in

some ways - the best features of both explicit and implicit methods. As we will see, at each time

instance, the program has to only solve a tri-diagonal matrix and this is considerably more efficient

than solving for an arbitrary matrix equation. Let me give a brief run down of how the integrator

is designed for this problem. We start with the Schrodinger equation

iℏ
∂

∂t
Ψ(x, t) = ĤΨ(x, t) (1)
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Using the Taylor series expansion about a small step ∆x, we can write the

Ψ(x+∆x) = Ψ(x) + ∆x
∂Ψ(x)

∂x
+

1

2
∆x2

∂2Ψ(x)

∂x2
+O(∆x3) (2)

Similarly, we can also expand using Taylor series about x using −∆x to get

Ψ(x−∆x) = Ψ(x)−∆x
∂Ψ(x)

∂x
+

1

2
∆x2

∂2Ψ(x)

∂x2
−O(∆x3) (3)

On combining both of these expansions, we get

Ψ(x+∆x) + Ψ(x−∆x) = 2Ψ(x) + ∆x2
∂2Ψ(x)

∂x2
+O(∆x4) (4)

By dropping the higher order terms rearranging, we can isolate the second derivative as a finite

approximation
∂2Ψ(x)

∂x2
≈ Ψ(x+∆x) + Ψ(x−∆x)− 2Ψ(x)

∆x2
(5)

Now, let us switch to grid notation on our discrete mesh of n∆t and i∆x points. Ψn
i is indexed

spatially with the index i and temporally with index n. This means Ψ(t, x ± ∆x) = Ψn
i±1 or

Ψ(t ± ∆t, x) = Ψn±1
i . Note that we have a great deal of freedom in choosing how we wish to

formulate the discrete equation - the only constraint being that limit ∆x = ∆t −→ 0 should reduce

our formulation to Schrodinger Equation. So, we can equivalently write the Schrodinger equation

using the average of wavefunction at two time steps

iℏ
(
Ψn+1 −Ψn

∆t

)
=

1

2
(ĤΨn+1 + ĤΨn) (6)

We can rearrange to isolate the Ψn+1 term to get

Ψn+1 =

(
1

1 + i∆t
2ℏ Ĥ

)(
1− i∆t

2ℏ
Ĥ

)
Ψn (7)

Recall the Hamiltonian operator Ĥ is defined as

Ĥ =
−ℏ2

2m

∂2

∂x2
+ V (x) (8)

We can plug the finite difference approximation from Eq. 5 in the Hamiltonian operator and then

plug the Hamiltonian operator back in Eq. 7 to get finite approximations both in space and time.

After the substitutions and some algebra, we will get the following equation

Ψn+1
i+1 +Ψn+1

i−1 +AiΨ
n+1
i = Bi (9)
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where

Ai = −2 +
4im∆x2

ℏ∆t
− 2m∆x2

ℏ2
Vi (10)

and

Bi = −Ψn
i+1 −Ψn

i−1 +Ψn
i

(
2 +

4im∆x2

ℏ∆t
+

2m∆x2

ℏ2
Vi

)
(11)

Notice Eq. 9 has only Ψn+1 on LHS and only Ψn on RHS. However, recall Crank Nicholson is not

an explicit method and solving Eq. 9 requires solving a family equations. If we know the initial

conditions Ψ0
i and the boundary conditions Ψn

0 and Ψn
L, then we can formulate Eq. 9 in terms of

a tridiagonal matrix equation of the following form

A1 1 0 0 ...

1 A2 1 0 ...

0 1 A2 1 ...

.. .. .. .. ...

0 0 .. 1 AL−1





Ψn+1
1

Ψn+1
2

Ψn+1
3

...

Ψn+1
L−1


=



B1

B2

B3

...

BL−1


(12)

This sort of tridiagonal matrix can be solved very efficiently using the Thomas algorithm which

involves a forward sweep and a reverse sweep (koonin). The convenient thing about solving

tridiagonal matrices is the fact that one does not even have to work with matrices in the first place.

We can get by simply using vectors. In our case, the two off diagonals are simply 1s. So, effectively

we only need to work with the main diagonal vector and the vector on the RHS to solve for the

unknown Ψn+1. I provide a brief snapshot of the algorithm for solving family of equations for Ψ.

First, we need two create two auxiliary arrays R and U . Now, we start with defining

U1 =
1

A1
and R1 = B1U1 (13)

from here, we start the forward sweep

Ui =
1

Ai − Ui−1
and Ri = (Bi −Ri−1)Ui (14)

for i ∈ [2, 3...L− 1]. Now, we do the backward sweep to solve for Ψn+1 using R and U . This would

be done as follows

Ψn+1
i =

RL−1 i = L− 1

Ri − UiΨ
n+1
i+1 i < L− 1

(15)

where i goes from L − 1, L − 2, L − 3...1. In this way, we would have solved for Ψn+1. Now, we

can simply repeat this procedure to get Ψn+2 using Ψn+1. Also, note that we we are working with

complex numbers in these simulations. To make a number complex in python we just puts a j next

to the numeral. For example, x = 5.6 + 3.1j would a complex number that can be decomposed

as x.real = 5.6 and x.imag = 3.1. When generating arrays or plotting, one must ensure that the
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complex datatype has been declared otherwise python might ignore the imaginary parts. The main

python code that implements Crank Nicholson integration loop is the following -

1 for n in range(0, len(t) -2): #Index n iterates of the time variables

2 Psi[n, 0], Psi[n, -1] = 0, 0 #Fixed Boundary conditions (can be

interpreted as infinite potential walls on each sides)

3

4 for i in range(1, len(x) -2): #Index i iterates over the space

variables

5 A[n, i] = -2 + (4j*m*dx**2)/(hbar*dt) - (2*m*dx**2)/(hbar **2)*V(x[i])

6 B[n, i] = -Psi[n, i+1] - Psi[n, i-1] + Psi[n, i] * (2 + ((4j*m*dx**2)/(

hbar*dt)) + ((2*m*dx**2)/(hbar **2))*V(x[i]))

7

8 #Supplementary Matrices required for

9 U[n, 1] = 1/A[n, 1]

10 R[n, 1] = B[n, 1] * U[n, 1]

11

12 #Foward Sweep

13 for i in range(1, len(x) -2):

14 U[n, i] = 1/(A[n, i] - U[n, i-1])

15 R[n, i] = (B[n, i] - R[n, i-1])*U[n, i]

16

17 N = len(x)-1

18 i = N-1

19

20 Psi[n+1, N] = R[n, N]

21

22 #Backward Sweep

23 while i>=1:

24 Psi[n+1, i] = R[n, i] - U[n, i]*Psi[n+1, i+1]

25 i -= 1

2.2 Setting-Up the Problem

To implement the Crank-Nicholson scheme for solving the Schrodinger equation, we need to set-up

the problem appropriately. First we set up our spatial and temporal range. In the simulations that

I run, I define x ∈ [0, 3] and t ∈ [0, 100] with ∆x = 0.01 and ∆t = 0.001. Next, we need to define the

constant m corresponding to the mass in Schrodinger Equation and the reduced Planck’s constant

ℏ. Though the values of these constants can be found through a quick google search, the choice of

appropriate units might require some thought (or some more googling). Taking into consideration

the fact that we are working in quantum scales, an inappropriate choice of units can easily render

our dynamics negligible. Conveniently for me, (Robertson) suggests a nice set of units to work with

compatible with our range in x and t.

1. Length - nanometers (10−9m)
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2. Time - femtoseconds (10−15s)

3. Energy - electron-volts (≈ 10−19eV )

In these units, reduced Planck’s constant is ℏ = 0.6582eV.fs and electron’s mass is m = 5.68. Now,

another non-trivial choice is that of the boundary conditions. The simplest boundary conditions

we can choose for this problem are Ψ(x = 0) = 0 = Ψ(x = L). If the domain L is sufficiently larger

compared to the dynamically significant region, then this fixed boundary conditions work because

the wavefunction has the property of vanishing in the spatial limit tending to infinity. On the

other hand, if the wave-packet during its dynamical evolution interacts with the fixed boundaries

in ways significant to the simulation results, we can treat these boundary conditions as the physical

equivalent of having infinite potential barriers at both ends which constraint the wave-packet in a

box. There are other, more sophisticated, treatments of the boundary conditions which one can

explore (Alcubierre) (Thijssen) but for the purposes of this project, the fixed boundary conditions

suffice.

3. Standard Quantum Phenomena

In this section, I explore some quantum phenomena in different potentials. I mention briefly what

our analytical treatments would lead us to expect for each case and then demonstrate the results

of my simulations. Though I have not explicitly derived the analytical results, the closed form

solutions that exist can be easily found in standard QM textbooks (Griffiths) (Sakurai).

3.1 Wave Packet Evolution

The simplest thing numerically that we can do is studying the free particle i.e. setting the potential

V (x) = 0 everywhere. A particle located at x = µ with an uncertainty in its position measurements

of ∆x = σ can be simulated using a Gaussian wave-packet of mean µ and standard deviation σ.

The initial wave-packet corresponding to the particle is defined as

Ψ(t = 0) =
1

π1/4
√
σ
exp

(
−(x− µ)2

2σ2

)
exp (ip0x/ℏ) (16)

where µ is the position of the particle, σ is the uncertainty in position and p0 is the average

momentum of the particle. The initial state of the system is represented in Fig. 1.

The time evolution we expect from such a wave-packet via our analytical treatment is a char-

acteristic spreading of the probability distribution in such a way that the wavefunction remains

normalized. On performing the time evolution using the Crank-Nicholson integrator, we do ob-

serve (in Fig. 2) the spreading of the probability distribution of our wave-packet. But does this
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Figure 1: Initial Gaussian wave-packet representing a free particle (with p0 = 0)

spreading meet the normalization constraint imposed by the physics of the system? We can check

that explicitly at each time step by computing the sum of probability of finding the particle at each

location. Fig. 3 shows clearly that the wavefunction indeed remains normalized during the time

evolution. This normalization check was performed for each simulation and in each simulation a

similar graph was achieved. To avoid redundancy, however, I took the wise decision of not putting

the same graph four different times in the report.

3.2 Infinite Square Well - Eigenstate

The infinite potential well of length a has a family of energy eigen-functions which are characterized

by the initial wave-function

Ψn(t = 0) =

√
2

a
sin
(nπx

a

)
where n = 1, 2, ... (17)

These wave-functions have the key feature of a probability distribution that is constant in time.

Further, the time evolution of such eigenstates demonstrate sinusoidal oscillations of the wavefunc-

tion. I simulate such an eigenstate (where n = 2) for infinite square well potential and noticed that

the numerical results are in conjunction with our theoretical understanding. I cannot create an

infinite potential well using the finite memory of a computer. However, this potential can be ap-

proximated by having a difference in potential which is of a much much greater order of magnitude



Tiwari 10

Figure 2: Time evolution of the wave packet in absence of any potential

Figure 3: Explicit check for normalization of the wavefunction during time evolution
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than that of the wavefunction. Fig. 4 displays the initial state of the system that was evolved in

time and Fig. 5 and Fig. 6 are the results of the simulations. The probability distribution indeed

stays constant in time (apart from minor numerical errors due to the finite difference approxima-

tion). Further, I also observed the sinusoidal oscillations of the real and imaginary parts of the

wavefunction through time within the square potential well.

Figure 4: Initial state of energy eigen function (n=2) for infinite square well

3.3 Quantum Tunneling through Potential Bump

Another interesting phenomena studied in introductory QM courses is quantum tunneling of the

wavefunction through various potentials. Classically, if a potential barrier is greater than the energy

of an incident wave or particle, we expect no transmission. However, quantum mechanically, a part

of the wavefunction can still seep through the potential barrier, thereby, rendering a non-zero

probability of finding the particle having transmitted to the other side of the potential barrier.

To start the simulation, we require a Gaussian potential bump and a Gaussian wave-packet. The

energy of the Gaussian wave-packet is defined as

E =
p20
2m

(18)

In this simulation, we are taking p0 = 0, which implies the E = 0eV for the wave-packet incident

on the potential barrier. On the other hand, as demonstrated in Fig. 7, the potential barrier is
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Figure 5: Time invariant probability distribution for infinite well potential

Figure 6: Sinusoidal oscillations of the eigenstate wavefunction

0.75eV ,

As expected from the analytical solutions, a part of the wavefunction transmits through the poten-

tial bump (as seen in Fig. 9) that leads to a non zero probability of finding the particle ‘behind’

the potential barrier (as seen in Fig. 8)
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Figure 7: Initial condition to observe QM tunnelling through a Gaussian Bump. At t = 0, µ = 1,
σ = 0.1 and p0 = 0 for the wave packet.

3.4 Potential Step

The final case that I consider is that of the finite potential step. In this simulation, I create a

one-sided potential step of V = 0.05eV and I give the initial wave-packet a forward momentum

of p0 = 0.53eV.fs/nm which corresponds to an energy value of E = 0.015eV . Clearly, the energy

of the incident wave-packet is less than that of the potential step. Classically, we would expect

a complete reflection of the wavefunction with no transmission inside the region. However, as

was the case in the last section, we observe quantum tunnelling in this case as well. The initial

configuration of the simulation has been displayed in Fig. 10. Notice in Fig. 11, the probability

amplitude decreases exponentially inside the potential step. The deeper inside the potential step

we go, the less likely it is for the particle to be present there.

4. Scope for Further Work

Obviously, there are infinitely many potentials and initial conditions that one can solve Schrodinger

equation for using the Crank-Nicholson integrator I programmed. An infinitely many of these

configurations would also be infinitely boring to study. However, some interesting class of problems

that I could not explore due to time constraints but would like to explore (and would urge to
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Figure 8: Minute disturbances in the probability distribution function to the right of the potential
barrier demonstrate a non zero probability of finding the particle there.

Figure 9: Initial wave-packet seeping through the potential barrier

reader to do so too) involve the Quantum harmonic oscillator potential with and without periodic

perturbations. Analytical solutions for the Quantum harmonic oscillator exist against which the

numerical results can be compared, should one wish to do so. Apart from this, a more in-depth

numerical analysis of error, numerical dissipation, grid-size dependence, etc. can be performed for

the program. I doubt though any of it would be as interesting as watching a nice animation of
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Figure 10: Initial condition to observe QM tunnelling through a Potential Step (V = 0.05eV )

Figure 11: Probability distribution of a wave-packet quantum tunnelling through a potential step
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Figure 12: Time evolution of the wave-function scattering in the potential step simulation

quantum tunnelling generated by the program (but who am I to judge the interests of others!). As

(Robertson) points out, one can also write programs using explicit methods and observe what is

it that goes wrong there. Most importantly, the one thing that just might be within my current

competence as a programmer is writing an efficient script to solve the Schrodinger in 3 spatial

dimensions instead of just 1. This seems to be a nice computational challenge that one might want

to take up in the summers. Finally, one can go the CS major route from here and try to translate

the code in a more object-oriented fashion and make a nice library/package for doing quantum

mechanics on python.
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Appendix: Animations

To better observe the dynamical evolution of wave-function, I generated some animations. There

is no meaningful method of embedding the GIFs I had generated within this PDF report but if

someone is interested in seeing them, they can write to me at kartik.tiwari9194@gmail.com. A

sample python script used for generating the animations is listed below.

1 import matplotlib.animation as animation

2 import os

3

4 fig = plt.figure ()

5 plt.xlabel(’Position [x]’)

6 plt.ylabel(’Probablity Distribution [U]’)

7 plt.grid()

8

9 plts = [] # get ready to populate this list the Line artists to be

plotted

10 # plt.hold()

11 for i in range(0, int(len(t)/30), 1):

12 p, = plt.plot(x, mod(Psi[i ,:]**2) , ’r’) # this is how you’d plot a single

line ...

13 plts.append( [p] ) # ... but save the line artist for the animation

14

15 ani = animation.ArtistAnimation(fig , plts , interval=1, repeat_delay =3000) # run

the animation

16 ani.save(’test.mp4’, fps =24) #Save the animation

17 os.system("ffmpeg -i test.mp4 test.gif") #Convert mp4 to GIF
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