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I. INTRODUCTION

With the recent cabinet approval for LIGO India’s funding,
it is an exciting time for GR community. All the more relevant,
then, is to understand that a significant reason why LIGO
detectors manage to consistently locate needles in (astronom-
ically large) haystacks is because they have a sense of what
they are looking for. Linearized perturbations on metric field
are insufficient to make precise predictions about gravitational
waves due to mergers. Therefore, Numerical Relativity plays
an important role in modelling wave-forms and this is what I
discuss in this short note.

A pragmatic impetus for studying numerical schemes for
understanding gravity is that the mathematics involved in
GR is very difficult and linearization/perturbative techniques
fail to capture the subtle features of certain astrophysical
phenomena like gravitational waves. A philosophical reason
is that GR presents a block universe in the form of a 4
dimensional spacetime manifold which exists as an eternal
object with no dynamics. Since humans are constrained on the
phenomenological slices of the present, we require a general
method of mapping the theoretical features to domains we
perceive and comprehend. Numerical relativity (NR), beyond
a working knowledge of computational methods, also requires
a strong grip on certain theoretical concepts like canonical GR
and conformal decompositions which are often not covered
in undergraduate (or even graduate courses) in GR. In this
document, I present an overview of these theoretical concepts
which are also often useful in domains unrelated to NR (such
as quantization of gravity or cosmology).

II. SETTING THE STAGE

To set the stage, we observe that the twice contracted
Bianchi identity gives us the following property of the Einstein
tensor

∇µG
µν = 0 (1)

=⇒ ∂0G
0ν + ∂kG

kν +GλνΓµ
λµ +GµλΓν

λµ = 0

Notice that the Einstein tensor contains at most second time
derivatives and the second term in the above expansion is a
spatial derivative of the Einstein tensor. Therefore, all terms in
the expansion must contain at most second time derivatives.
However, the first term is already a time derivative. This means
the G0ν and Gµ0 components of the Einstein tensor contains
only first order time derivatives. This observation helps in
categorizing the ten independent field equations of general
relativity in two classes -

1) Four under-determined elliptic type PDEs which serve
as constraint equations (first time derivatives)

2) Six under-determined hyperbolic type PDEs which serve
as evolution equations (second time derivatives)

This division into constraint and evolution equations is often
explained by referring to the similar division in Maxwell’s
equations where the divergence equations constraint the set
of possible solutions (or allowed initial conditions) and the
curl equations give time-evolution of initial data. The under-
determined aspect of the equations indicates that there exists
a gauge freedom1 in the theory. Solving the field equations is
essentially solving an Initial-Boundary value problem. In the
following sections, we sharpen this observation by decompos-
ing objects in 3+1 dimensions.

III. CANONICAL GENERAL RELATIVITY

A. Decomposing Metric in 3+1 Dimensions

Via appropriate coordinate choices, we can represent the 4D
spacetime as a stack of 3-dimensional hypersurfaces Σ (pa-
rameterized some t) foliating it2. The appropriate coordinate
choice results in a metric of the form

gµν =

(
−α2 + βiβ

i βi

βi γij

)
The metric components carry a very geometric interpretation
(see Fig. 1).

1) Lapse Function α: Helps in connecting the time elapsed
in coordinate frame dt with the time lapsed dτ for

1More formally, one can say the solution cannot be determined to more
than a diffeomorphism

2Not all torsion free curved manifolds can be completely foliated with
hypersurfaces but sufficiently many do to remain interesting.



Fig. 1. Geometrical interpretation of the various components making up
the 3+1 decomposed metric visualized on two adjacent hypersurfaces. Figure
taken from [1]

an observer whose worldline is perpendicular to the
hypersurface (called Eulerian or Normal observers).

dτ = α(t, xi)dt (2)

2) Shift Vector βi: Captures the relative velocity with which
the coordinate lines on the hypersurface drift away from
the Eulerian observer.

xi
t+dt = xi

t − βi(t, xi)dt (3)

3) Spatial Metric γij(t, x
i): Defines the invariant line ele-

ment on the spatial hypersurface Σ

dl2 = γijdx
idxj (4)

There are infinite ways to foliate the spacetime. The freedom
in the foliation via stacking hypersurfaces as well as the
coordinatizing of the hypersurface corresponds to the pre-
viously mentioned gauge freedom in the theory. Therefore,
lapse function α and shift vector βi are known as the gauge
functions. The spacetime interval in terms of the decomposed
metric then takes the following form

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj (5)

B. Decomposing Curvature in 3+1 Dimensions
Now that we have our 3+1 decomposed metric, let us try to

decompose our curvature components. GR is mostly concerned
with the intrinsic curvature of manifolds (constructed using
second derivatives of the metric) since first derivatives can
be made to vanish locally. However, in our decomposition,
the embedding of the hypersurfaces and, consequently, the
extrinsic curvature of the metric become important.

1) Extrinsic Curvature: The extrinsic curvature of the hy-
persurface Kij is a measure of the change in the normal vector
under parallel transport.

Kij =
1

2α
(∇iβj +∇jβi − ∂tγij) (6)

On identifying the lie derivative Lβγij = ∇iβj + ∇jβi and
rearranging, we arrive at the kinematic evolution equation.

(∂t − Lβ)γij = −2αKij (7)

A discussion on each of the boxed equations follows in Section
IV. For now, let us continue assembling the remaining pieces.

2) Intrinsic Curvature: Understanding the projection of
the 4 dimensional Riemann tensor to 3+1 dimensions is not
essential at this point but one must know that the 4 dimensional
intrinsic curvature can be written in terms of the lapse, shift
and extrinsic curvature using the Gauss-Codazzi-Mainardi set
of equations.

R(4)
µνρσ ←→ R(3)

µνρσ

C. Projections of Einstein Field Equations

The field equations of general relativity are

Gµν = 8πTµν (8)

Though the following results can be generalized for matter
solutions, for the sake of simplicity we will only look at the
vacuum solutions i.e. Tµν = 0 for now (which still provide
many interest investigations).

When we talk of projecting the field equations, for each
index we have two choices. We can project components onto
the hypersurface by contracting with a projection operator
defined as

Pµ
ν ≡ δµν + nµnν (9)

Or, we can project in direction perpendicular to the hypersur-
face by contracting the Einstein tensor’s index with the normal
vector nµ.

nµ = (1/α,−βi/α) and nµ = (−α, 0) (10)

By making different choices for field equation projections,
we arrive at various important results. Further, unlike deriving
the Gauss-Codazzi relations, performing the following calcu-
lations is fairly simple and instructive.

D. Hamiltonian Constraint

If we contract both the indices using the normal vector, we
get

2Gµνn
µnν = R(3) −KijK

ij +K2 = 0 ≡ H (11)

where K is the contraction of the extrinsic curvature K =
γijKij . This equation is known as the Hamiltonian constraint.

E. Momentum Constraint

On projecting one index onto the hypersurface and the other
on the normal, we get

−Pµ
i n

νGµν = ∇jKij −∇iK ≡Mi (12)

where ∇i ≡ (P∇)µi is the projection of the covariant
derivative. These three equations together are known as the
momentum constraints.



F. Dynamical Evolution Equation

Finally, if we project both of the indices onto the hypersur-
face, we get

Pµ
i P

ν
j Gµν = LnKij (13)

(∂t − Lβ)Kij = −∇i∇jα+ α
(
R

(3)
ij +KijK − 2Kk

i K
j
k

)
which is known as the dynamical evolution equation.

IV. CHECKPOINT: ADM-YORK EQUATIONS

Through the decomposition of the metric and projecting the
field equations, we have assembled all the pieces of ADM
formalism which is a canonical formulation of GR. Let us
briefly recapitulate what we have gathered till now.

The three momentum constraints Eq. (12) and one Hamil-
tonian constraint Eq. (11) together constitute the four elliptic
type PDEs which must be solved to get the initial data.
Notice there are no time derivatives in these equations. Further,
Bianchi identities ensure (at least in theory) that if the initial
data meets the constraint requirements, time evolution would
not break that fulfillment.

Once we have the initial data, we can use the evolution
equations Eq. (7) and Eq. (13) to evolve the solution towards
the next spatial hypersurface.

Hamiltonian Formulation [2]:

Canonical General Relativity is often introduced as the
hamilitonian form of general relativity. However, in our cur-
rent set-up, it is not immediately transparent why the ADM
equations are the hamilitoninan equations. This is because the
presentation was not of the original ADM equations (which
were written in terms of conjugate momenta π) but instead
York’s form of the ADM equations (also called ADM-York
equations). However, to get a quick intuition, one can think
of the following. Hamiltonian mechanics involves two first
order time derivative equations for the phase space coordinates
(q, p). The evolution equations which we have presented are
both first order in time. However, the extrinsic curvature Kij

already has first order derivatives of the spatial metric γij in it.
Therefore, if we treat the metric components as an analogue
of q, then the extrinsic curvature can be thought of as an
analogue of the conjugate momenta p. Thus, the kinematic
evolution equation Eq. (7) is the first type of the Hamiltonian
equations of motion by being the first-order time derivatives
of the metric. The dynamical evolution equation is the second
type of the hamiltonian equations of motion by being the first-
order time derivative of the first-order derivatives of the metric.

V. WELL-POSEDNESS

Though we have successfully separated our constraint equa-
tions from the evolution equations, we are not yet in a position
to effectively perform numerical simulations. A major issue
which has been identified is that the ADM-York equations are
not well-posed [3]. This means even if we start with a small
perturbation, the equations eventually blow up. A well-posed

system (like the wave equation) shows ‘global hyperbolicity’3

i.e.
|u(t, x)| ≤ keαt|u(0, x)| (14)

for ∂tu = Du where D is some differential operator.
For any numerical simulation, we will require a well-posed

form of the field equations and it is often said in NR ‘more for-
malisms have been proposed which claim global hyperbolicity
than there are groups to test them’. One way to arrive at well-
posedness is by selecting the appropriate gauge functions (such
as Harmonic Gauge, Bonna Masso, etc.) [4]. However, an
important and instructive well-posed system of NR equations
is the BSSNOK (or sometimes just BSSN) formulation. BSSN
formalism is based on the conformal recasting of the ADM
elements (which is discussed in the part two of my Learner’s
Map to NR series).

VI. DISCUSSION

The next part of the Learner’s Map covers how various NR
elements (metric, curvature, field equation, ADM equations,
etc.) are conformally decomposed to achieve well-posedness.
This also naturally leads to a discussion of how Black-Hole
initial data is solved for. This would complete an elementary
bird’s eye view of the theoretical aspects of numerical relativ-
ity. Subsequent parts of this Learner’s Map, once published,
can be accessed online - kartiktiwari.in/nr.

In this brief note, the numerical schemes required to solve
the equations were not discussed. Writing high resolution
parallel scripts is an art and science in itself. However, readers
who do not yet wish to spend weeks writing simulations
can opt to explore existing open-source NR libraries. There
are many but one which stands out for its user-friendliness
and versatility is EinsteinToolkit (ETK). ETK is based on the
Cactus environment and each module is called a thorn. It also
employs CarpetX for adaptive-mesh refinement. An effective
entry point is to try running example simulations and slowly
learning to tweak parameters. One such example simulation
which can be run easily (if one has appropriate cluster re-
sources) is the GW150914 event (see Fig. 2). ETK gallery
expands with every major release and, as a part of the NRCSS
hackathon, my team and I also ran a low resolution simulation
of a Fishbone-Moncrief disk (initial conditions developed by
Zach Eitnee). FM disks are toroidal self gravitating viscous
matter around Kerr blackholes (see Fig. 3).

Beyond the cited references, those interested are encouraged
to watch the lectures on Numerical Relativity delivered by
Prof. Thomas Baumgarte at ICTS, Prof. Helvi Witek at IPAM
and the Canonical GR lectures during the Heraeus Winter
School on Gravity and Light, all of which can be easily found
on the Youtube.
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